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Abstract

Inflammation is a complex biologic response to gross
traumatic injury, endogenous ligands, or exogenous
ligands. The inflammatory response is essential for
reestablishing organismal homeostasis. It must be
meticulously monitored and tightly regulated as over- or
under activation of the inflammatory response can cause
morbidity and even mortality. Emerging evidence has
begun to depict the molecular mechanisms by which
inflammation is regulated via the nervous system; that is,
inflammation is controlled by neuroimmunologic circuitry
operating in a reflexive continuum. Known as the
inflammatory reflex arc, this pathway exhibits an afferent
and efferent arc: both of which derive from vagal nerve
fibers. The afferent arc is comprised of vagal receptors
detecting specific ligands indicating injury. An activated
afferent arc will initiate the efferent arc, the cholinergic
anti-inflammatory pathway, which regulates
immunologically-mediated inflammation. Recent research
has demonstrated that this pathway can be modulated
with vagus nerve stimulation, providing a potential
therapeutic option for a variety of inflammatory
conditions. Here, we review the neuroimmunological
mechanisms of the inflammatory reflex arc. Furthermore,
we analyze current research and discuss potential
therapeutic implications of the cholinergic anti-
inflammatory pathway.
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Introduction
The inflammatory response is characterized by multifaceted

interactions between pro-inflammatory and anti-inflammatory
cytokines directed at eliminating pathogens, promoting
healing, and reestablishing organismal homeostasis. Recently,
neural reflex circuits have been demonstrated to exhibit some
control of pro-inflammatory concentration, and, thus, control
of the inflammatory response [1]. Known as the inflammatory
reflex arc, this molecular pathway derives from vagal afferent
and efferent nerve fibers [1]. The afferent arc is dependent
upon vagal receptors, which sense specific ligands indicating

tissue injury [1]. Once activated, the afferent arc will stimulate
the efferent arc, the cholinergic anti-inflammatory pathway
[1]. The cholinergic anti-inflammatory pathway regulates
immunologically-mediated inflammation via suppression of
pro-inflammatory cytokine expression [1]. Recent research has
demonstrated that this pathway can be modulated with vagus
nerve stimulation, providing a potential therapeutic option for
a variety of inflammatory conditions [1]. Here, we review the
molecular immunological mechanisms of the inflammatory
reflex arc. Moreover, we examine the current basic science
literature and consider potential clinical significance of the
cholinergic anti-inflammatory pathway.

Neuroanatomy of the Vagus Nerve
Derived from the Latin vagary, meaning “wandering,” the

vagus nerve acquired such a name due to its extensive
distribution throughout homo sapien architecture [2]. Cranial
nerve X, also known as the pneumogastric nerve, forms via a
series of nerve rootlets from the lateral portions of the
medulla oblongata which exit the cranium through the jugular
foramen amongst the glossopharyngeal and spinal accessory
nerves (Figure 1A) [2]. Vagus has a superior ganglion, the
jugular ganglion, which permits general sensation and an
inferior ganglion, the nodose ganglion, which allows for
visceral and special sensation [2,3]. The vagus nerve has four
nuclei within the medulla oblongata (Figure 1B). Primary
terminal nuclei of vagal afferents include the spinal nucleus of
the trigeminal nerve, receiving general somatic afferent
terminations, and the nucleus tractus solitarius, collecting
general visceral afferent and special visceral afferent
terminations [2,3]. Nuclei of vagal efferents include the
nucleus ambiguus, giving rise to somatic visceral efferents and
general visceral efferents, and the dorsal motor nucleus, giving
rise to general visceral efferents [2,3]. Vagus supplies motor
innervation to the glands and involuntary musculature of the:
tracheobronchial tree, esophagus, heart, and the alimentary
tract as far as the splenic flexure [2]. Vagus also supplies motor
innervation to the voluntary musculature of the superior
esophagus and larynx and sensory innervation to the larynx
and pharynx [2,3]. Such vast innervation permits the brain to
constantly analyze and influence the physiologic status of
peripheral tissue. Vagus is able to respond to a plethora of
environmental stimuli via numerous receptors such as those
for stretch, mechanical pressure, osmotic pressure,
temperature change, and pain [4,5]. Furthermore, vagal
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afferents can be stimulated in response to chemical stimuli
such as glucagon-like peptide-1, cholecystokinin, somatostatin,
serotonin, and importantly, interleukin-1 (IL-1) [4,5].

Figure 1 Schematic diagram of vagal nuclei. (A) Depicted here is an anterior perspective of the medulla oblongata and vagal
nuclei. On the right side of the medulla, afferent vagal nuclei are depicted including the spinal nucleus of trigeminal nerve
(blue) and the nucleus tractus solitarius (orange). On the left side of the medulla, efferent vagal nuclei are depicted including
nucleus ambiguus (red) and the dorsal motor nucleus (green). The vagus nerve forms via a series of nerve rootlets from the
lateral portion of the medulla, which exits the cranium through the jugular foramen (black circle). The jugular ganglion of the
vagus nerve is proximal to the jugular foramen whereas the no dose ganglion is distal. (B) Depicted here is a superior
perspective of a transverse section through the medulla oblongata. Afferent vagal nuclei depicted include the spinal nucleus
of trigeminal nerve (blue) and the nucleus tractus solitarius (orange). Efferent vagal nuclei depicted include nucleus ambiguus
(red) and the dorsal motor nucleus (green). Olivary bodies (gray) are also depicted for orientation purposes [3]

The Inflammatory Reflex Arc: The
Afferent Arm

The inflammatory reflex can be activated centrally or
peripherally [1,6]. Central activation is mediated by high
concentrations of immunologic stimuli, such as tumor necrosis
factor (TNF), acquiring access to circumventricular regions of
the brain [1,6,7]. In fact, the dorsal vagal complex, which

includes the dorsal motor nucleus, the area postrema, and the
sensory nuclei of the nucleus tractus solitarius, has been
demonstrated to exhibit a response to circulating TNF thereby
modulating vagal efferent activity [6-10]. Relative to the high
threshold of activation of central receptors, peripheral
activation can be achieved with immunologic substrates at
much lower concentrations [6,7]. Peripheral activation of vagal
afferents exhibit an imperative role when the localized
concentration of inflammatory mediators is not sufficient to
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reach the brain parenchyma from the blood [11]. The
molecular mechanisms by which vagal afferents “sense” the
propinquity of inflammatory mediators have yet to be fully
depicted; however, vagal nerve fibers have been shown to
express IL-1 receptor [5,6,11].

Previous studies have confirmed the necessity of vagal
modulatory activity with respect to peripheral activation
[12-16]. Watkins et al. demonstrated that the inception of
fever is dependent upon vagal fibers transmitting signals from
the abdomen to the brain [15]. Subdiaphragmatic vagatomy
prevented the induction of fever in animals given IL-1 whereas
IL-1 given to animals with an intact vagus nerve exhibited fever
onset [15]. It was concluded that the vagus nerve is capable of
detecting IL-1 in the periphery, transmitting this molecular
information to the hypothalamus, and, as a result, increasing
the activity of these neural networks associated with the onset
of fever [15]. Furthermore, additional evidence has
demonstrated that IL-1 increases the firing rate of vagal
afferent fibers and that IL-1 stimulates neuronal depolarization
[17,18].

Although IL-1 exhibits a significant role in stimulation of the
afferent arc of the inflammatory reflex, other exogenous and
endogenous ligands may indirectly stimulate this pathway via
upregulation of IL-1 [19-21]. Exogenous ligands, such as the
pathogen-associated molecular patterns (PAMPs)
lipopolysaccharide and double-stranded RNA, interact with
Toll-like receptors (TLRs) [19,20]. Interaction of a PAMP with a
TLR initiates downstream signaling, which activates the
regulatory transcription factor nuclear factor – κB (NF-κB)
leading to upregulation of pro-inflammatory cytokines,
including IL-1 [19,20]. Endogenous ligands, such as uric acid,
heat shock proteins or other damage-associated molecular
patterns (DAMPs) can also activate TLRs and produce a similar
response [19,21]. The presence of PAMPs or DAMPs causing an
upregulation in IL-1 levels is an additional indirect mechanism
by which the afferent arm can be activated [19-21].

The Inflammatory Reflex Arc: The
Efferent Arm

The afferent pathway is a fundamental component of the
inflammatory reflex arc [1]. Vagal afferent fibers send signals
to the brain stem, which are transduced to the nucleus tractus
solitarius [3]. Polysynaptic signals connect to the autonomic
nervous system’s output centers, the vagal motor neurons and
the rostral ventrolateral medullary sympathoexcitatory
neurons of the nucleus ambiguus, and the dorsal motor
nucleus [3]. Outflow from the medulla projects to the celiac
ganglion via vagal efferent fibers or preganglionic efferent
nerves, which originate within the sympathetic trunk [3]. Vagal
efferents terminate within the celiac ganglion [1-3].
Originating within the celiac ganglion are nerve cell bodies, the
axons of which constitute the splenic nerve [22-26]. Vagal
nerve fibers develop synapses on these cell bodies within the
celiac ganglion, which permits control of the innate immune
response in the spleen [3,22-26]. Here, the vagus nerve
activates catecholaminergic splenic nerves to release

norepinephrine [23,24]. Circulating norepinephrine within the
splenic parenchyma interacts with beta-2-adrenergic receptor
(ß2AR)-expressing T cells (CD4+Foxp3+CD44hiCD62Llo) (Figure
2) [23,27]. Adrenergic stimulation of the ß2AR induces these T
cells, expressing choline acetyltransferase, to synthesize and
release acetylcholine within splenic tissue [23,27].
Acetylcholine binds to splenic macrophages through the
alpha7 subunit nicotinic acetylcholine receptor (α7nAChR),
which is coupled to Janus kinase 2 (JAK2) and signal transducer
and activator of transcription 3 (STAT3) signal transduction
pathway (Figure 3) [28-30]. With respect to the splenic
macrophage, binding of acetylcholine to the α7nAChR
activates JAK2, a cytokine-associated tyrosine kinase receptor
[28-30]. Activated JAK2 phosphorylates monomeric STAT3
promoting homo- or hetero-dimerization and translocation to
the nucleus [28-30]. STAT3 interacts with NF-κB within the
nucleus via protein-protein interactions thereby suppressing
the transcriptional activity of NF-κB [28-30]. Furthermore, NF-
κB inhibition may be achieved independent of the JAK2/STAT3
pathway [16,30]. Although not entirely defined, this second
mechanism is thought to be dependent upon α7nAChR
inhibiting the phosphorylation of inhibitor of NF-κB (IκB) [30].
Dephosphorylated IκB is active and remains bound to NF-κB
thereby inhibiting NF-κB from translocating to the nucleus and
activating gene transcription [30]. Thus, the JAK2/STAT3 and
IκB pathways both suppress the transcription of various pro-
inflammatory cytokine genes, such as IL-1, IL-6, IL-8, TNF, and
CRP due to vagal efferent stimulation [22-30]. Moreover, the
production of anti-inflammatory cytokines, such as
transforming growth factor-ß (TGF-ß) and IL-10, is not
suppressed with stimulation of the cholinergic anti-
inflammatory pathway; rather, concentrations of anti-
inflammatory cytokines remain constant [31-33].

Current Research
Recently, electrical vagus nerve stimulation (VNS), activating

the cholinergic anti-inflammatory pathway, has shown
promising results in animal models for the treatment of a
variety of inflammatory conditions [34-39]. Levine et al.
considered whether VNS, via stimulation of the cholinergic
anti-inflammatory pathway, can reduce disease severity in a
collagen-induced arthritis (rheumatoid arthritis) animal model
[34]. Animals were subject to either active or sham VNS [34].
The experimental protocol was 15 days in length [34]. On day
1, collagen-induced arthritis was induced in rats containing
vagus nerve electrodes [34]. Vagus nerve stimulation was
applied once daily for 60 seconds days 9 through 15 [34].
Compared to the sham group, VNS of the cholinergic anti-
inflammatory pathway demonstrated a significant reduction in
ankle diameter and histological arthritis score [34]. The
reduced histological arthritis score showed significant
improvements in inflammation, cartilage destruction, pannus
formation, as well as bone erosion [34]. Importantly, the
improvement of bone erosion was coupled to a significant
reduction in serum concentrations of receptor activator of NF-
κB [34]. This study indicates that VNS, via the cholinergic anti-
inflammatory pathway, can significantly improve the
symptomatology of collagen-induced arthritis in an animal
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model and may warrant future studies in human rheumatoid
arthritis.

Figure 2 Norepinephrine binding to ß2AR-T cells leads to acetylcholine release. Vagal efferents terminate within the celiac
ganglion. Originating within the celiac ganglion are nerve cell bodies, the axons of which constitute the splenic nerve. Vagus
nerve fibers develop synapses on these cell bodies within the celiac ganglion, which permits control of the innate immune
response in the spleen. The vagus nerve activates catechoaminergic splenic nerves to release norepinephrine. ß2AR-T cells,
expressing ChAT, and B cells are in proximity to catecholaminergic splenic nerve fibers. Norepinephrine (orange dots) binds
ß2AR-T cells via the beta-2-adrenergic receptor (green cylinders) stimulating acetylcholine release. Acetylcholine (blue dots)
binds macrophages via the α7nAChR (yellow cylinders), which is coupled to signal transduction pathways. This interaction will
suppress macrophagic production and release of pro-inflammatory cytokines. Furthermore, splenic nerve stimulation can
arrest B-cell development and suppress antibody secretion (pink Y-shapes) [39]. (ß2AR, beta-2-adrenergic receptor; ChAT,
choline acetyltransferase; α7nAChR, alpha7 subunit nicotinic acetylcholine receptor)
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Figure 3 Acetylcholine binding to α7nAChR leads to suppression of NF-κB transcription. Vagal efferents stimulate
catechoaminergic splenic nerve fibers to release norepinephrine within the splenic parenchyma. Release of norepinephrine
within the splenic parenchyma induces the release of acetylcholine from ß2AR-T cells (ChAT+). Acetylcholine binds
macrophage α7nAChR activating two potential signal transduction pathways. 1) α7nAChR is coupled to JAK2, which
phosphorylates monomeric STAT3. Phosphorylated STAT3 monomers undergo dimerization and translocates to the nucleus.
Within the nucleus, STAT3 inhibits the transcriptional activity of NF-κB via protein-protein interactions. 2) α7nAChR inhibits
the phosphorylation of IκB. Dephosphorylated IκB remains active, complexed to NF-κB. This complex inhibits NF-κB
translocation to the nucleus. Both mechanisms inhibit NF-κB-mediated transcription of pro-inflammatory cytokines, such as
IL-1, IL-6, and CRP. (α7nAChR: alpha7 subunit nicotinic acetylcholine receptor; NF-κB: nuclear factor – κB; ß2AR: beta-2-
adrenergic receptor; ChAT: choline acetyltransferase; JAK2: Janus kinase 2; STAT3: signal transducer and activator of
transcription 3; IL-1: interleukin-1; IL-6: interleukin-6; CRP: C-reactive protein)

Jiang et al. investigated the role VNS may have in cerebral
ischemia and reperfusion injury and the molecular
mechanisms by which such a therapy may control these
pathologic processes [35]. An intraluminal occlusion procedure
was implemented in rats for right middle cerebral artery
occlusion (MCAO) [35]. Subsequent to right MCAO, VNS was
applied for 30 minutes [35]. Murine neurological function and
pro-inflammatory cytokine levels were analyzed 24 hours post
MCAO [35]. Rats treated with VNS exhibited significantly
better neurological deficits scores as well as reduced cerebral

infarct volume [35]. Furthermore, rats treated with VNS
exhibited significantly decreased levels of pro-inflammatory
cytokines, including IL-1ß, IL-6, and TNF- α, within the brain
penumbra [35]. This study signifies that VNS is a
neuroprotective therapy in acute cerebral ischemia via
activation of the cholinergic anti-inflammatory pathway [35].

Rezende-Neto et al. hypothesized that coagulopathy may be
improved with VNS via molecular modulation of the
inflammatory pathway to hemorrhagic shock [36]. Rats were
divided into three groups: sham hemorrhagic shock (HS), HS
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without VNS, and HS with VNS [36]. Hemorrhage was induced
by withdrawing 40% of total blood volume [36]. No fluids were
administered for 15 minutes with the intention of simulating
the time period prior to the arrival of emergency medical
services [36]. Fluid resuscitation was then implemented for 45
minutes [36]. Next, rats were subject to VNS in discrete
intervals for a total of 3.5 minutes [36]. Relative to baseline,
rats who were given VNS post-HS revealed a significant
increase in maximum clot firmness [36]. Importantly, a
significant increase in the pro-inflammatory cytokine IL-1 was
observed in rats subject to HS without VNS whereas a
significant decrease in IL-1 was observed in rats subject to HS
with VNS [36]. Furthermore, the anti-inflammatory cytokine
IL-10 was observed to be significantly elevated in rats subject
to HS with VNS [36]. These results indicated that VNS in rats
subject to HS improves coagulation as well as decreases the
inflammatory response to hemorrhage via increased activity of
the cholinergic anti-inflammatory pathway [36].

Conclusion
In this brief review, we described the inflammatory reflex

arc in detail, with an emphasis placed on potential stimulation
of the cholinergic anti-inflammatory pathway. Indeed, the
inflammatory reflex arc has transformed our perspective on
the neuroimmunology of inflammation. Potential
neuroimmunomodulation of the cholinergic anti-inflammatory
pathway may very well be a promising therapeutic option for
inflammatory conditions in the future.
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