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Seizure Prediction with Adaptive Feature 
Representation Learning

Abstract
Epilepsy	cannot	be	successfully	treated	through	medications	or	resection	in	about	
30%	of	patients.	Furthermore,	an	estimated	0.1	percent	of	epileptic	patients	suffer	
sudden	deaths	resulting	from	injuries	sustained	during	seizures.	For	this	reason,	
patients	with	 intractable	 seizures	 need	 alternative	 therapeutic	 approaches.	 An	
engineered	device	 tailored	 toward	seizure	prediction	 that	warns	patients	of	an	
impending	seizure	or	that	intervenes	to	prevent	its	occurrence	may	significantly	
decrease	 the	 burden	 of	 epilepsy.	 Although	 much	 research	 efforts	 have	 been	
directed	at	the	development	of	a	seizure	prediction	algorithm,	a	therapeutic	or	
warning	device	 that	meets	 stringent	clinical	 requirements	 is	 still	elusive.	 In	 the	
present	study	a	novel	patient-specific	seizure	prediction	method	is	proposed.	The	
method	is	based	on	time-frequency	analysis	of	scalp	electroencephalogram	(sEEG)	
and	 the	 use	 of	 state-of-the-art	 unsupervised	 feature	 representation	 learning	
techniques:	reconstruction	independent	component	analysis	and	sparse	filtering.	
In	 a	moving	window	 analysis,	 a	 novel	 engineered	 bivariate	 EEG	 characterizing	
measure	named	Normalized	Logarithmic	Wavelet	Packet	Coefficient	Energy	Ratios	
(NLWPCER)	 was	 extracted	 from	 all	 possible	 combination	 of	 EEG	 channels	 and	
relevant	frequency	sub	-	bands.	Thereafter	unsupervised	representation	learning	
algorithm	adapted	to	each	patient	through	Bayesian	optimization	procedure	was	
used	 to	 learn	NLWPCER	 features	 representation	or	 transformation	 suitable	 for	
data	classification	task.	Two	classification	models:	Artificial	Neural	Network	(ANN)	
and Support Vector Machine (SVM) were developed and trained to learn preictal 
(pre-seizure)	and	interictal	(normal)	EEG	feature	vector	patterns.	The	output	of	the	
classifiers	was	regularized	through	a	post	processing	operation	aimed	at	reducing	
false	prediction	rate	(FPR)	and	making	decision	on	the	generation	of	prediction	
alarms.	The	proposed	method	was	evaluated	using	approximately	545	h	CHB-MIT	
scalp	EEG	 recording	of	 17	patients	with	a	 total	 of	 43	 leading	 seizures.	 	On	 the	
average,	with	SVM	classifier	the	proposed	seizure	prediction	algorithm	achieved	a	
sensitivity	of	87.26%	and	false	prediction	rate	of	0.08h-1	while	with	ANN	classifier	
the	 algorithm	 achieved	 average	 sensitivity	 and	 false	 prediction	 rate	 of	 75.49%	
and 0.13h-1	 respectively.	The	proposed	method	was	validated	using	an	Analytic	
Random	Predictor	(ARP).	The	results	obtained	in	this	work	opens	a	pathway	for	
a	robust	and	consistent	real-time	portable	seizure	prediction	device	suitable	for	
clinical	applications.

Keywords: Electroencephalogram;	 Epileptic	 seizure	 prediction;	 Normalized	
Logarithmic	 Wavelet	 Packet	 Coefficients	 Energy	 Ratios	 (NLWPCER);	 Feature	
representation	learning
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Introduction
Epilepsy	constitutes	a	chronic	brain	disorder.	It	affects	almost	1%	
of	the	world’s	population.	This	neurological	ailment	is	associated	

with	 recurrent,	 unprovoked	 epileptic	 seizures	 resulting	 from	 a	
sudden	 disturbance	 of	 brain	 function.	 One	 particular	 disabling	
aspect	 of	 epileptic	 seizures	 is	 their	 sudden and unpredictable 
nature,	 limiting	patients’	activities	and	resulting	 in	poor	quality	
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of	 life.	 Common	 treatment	 for	 epilepsy	 is	 through	medication	
and surgery but these not only have grave repercussions or 
side	 effects	 [1]	 but	 also	 fail	 to	 satisfactorily	 control	 seizures	 in	
approximately	one-third	of	affected	patients.	A	 reliable	seizure	
prediction	 system	 based	 on	 electroencephalogram	 (EEG)	 may	
significantly	 enhance	 the	 quality	 of	 life	 and	 safety	 of	 sufferers	
and increase the chance of controlling seizures by administering 
therapeutic	agents	as	early	as	possible.	

Seizure	prediction	is	based	on	the	hypothesis	that	there	exists	a	
transition	state	(preictal)	between	the	interictal	(normal)	and	the	
ictal	(seizure)	states.	There	are	numbers	of	clinical	evidence	that	
support	this	hypothesis.	These	include	increases	in	cerebral	blood	
flow	 [2]	and	cerebral	oxygenation	 [3].	Accordingly,	 researchers	
have	 invested	 a	 great	 deal	 of	 effort	 over	 the	 last	 decades	 on	
attempting	to	predict	epileptic	seizures	based	on	EEG	signals.		

Le	 et	 al.	 [4]	 proposed	 a	 method	 to	 anticipate	 seizures	 using	
the similarity between an interictal reference and the current 
windows	of	EEG	based	on	a	nonlinear	analysis	of	zero-crossing	
intervals.	They	applied	this	algorithm	to	scalp	EEG	signals	 from	
23	 patients	 with	 temporal	 lobe	 epilepsy	 (TLE)	 which	 resulted	
in	 96%	 sensitivity	 and	 an	 average	 anticipation	 time	 of	 7	 min.	
Analyzing	 depth	 EEG	 recordings	 from	 five	 patients	 with	 TLE,	
Iasemidis	 et	 al.	 [5]	 developed	 an	 adaptive	 seizure	 prediction	
method based on the convergence of the “short-term maximum 
Lyapunov	 exponents”	 of	 the	 critical	 electrodes.	 They	 reported	
82.6%	 sensitivity	 along	with	 a	 false	 prediction	 rate	 of	 0.17	 h-1 
(preictal	periods	were	not	excluded)	and	an	average	prediction	
time	of	 100.3	min	 for	 a	 test	 dataset.	Hively	 and	Protopopescu	
[6]	 proposed	 a	 channel-consistent	 epileptic	 seizure	 prediction	
approach based on phase-space dissimilarity measures and 
applied	it	to	surface	EEG	from	41	patients	resulting	in	a	sensitivity	
of	87.5%	with	a	 false	positive	 rate	of	0.021	h-1 and an average 
prediction	time	of	∼35 min. In a work reported by Chisci et al. 
[7],	 the	 performance	 of	 an	 algorithm	 based	 on	 AR	 modeling	
of	 EEG	 signals	was	 assessed	 using	 intracranial	 recordings	 from	
nine	patients.	A	nonlinear	support	vector	machine	(SVM)	with	a	
Gaussian	kernel	was	employed	to	classify	a	feature	vector	made	
up	of	the	Auto	Regressive	(AR)	coefficients	for	each	multichannel	
EEG	epoch,	where	a	Kalman	filtering	procedure	was	considered	
in	the	post	processing	step.	The	study	reported	100%	sensitivity	
and	 the	 average	 false	 prediction	 rate	 and	 average	 prediction	
time,	respectively,	ranging	from	0	to	0.60	h-1 and ∼5 to 92 min.

Many	of	the	early	seizure	prediction	studies	showed	that	features	
derived	 through	 linear	 and	 non-linear	 EEG	 analysis	 were	
successful	 in	detecting	changes	within	minutes	to	hours	before	
seizure	 onset	 [8].	 However,	 it	 was	 later	 discovered	 that	 these	
studies	suffer	 from	serious	methodological	and	statistical	flaws	
as later research works gave contradictory seizure predictability 
results	 [9-13].	 Therefore,	 the	 question	 of	 seizure	 predictability	
appears	open	due	mainly	to	methodological	and	statistical	flaws	in	
several	of	the	literature	reports	[14].	To	promote	methodological	
quality	and	practical	assessment	of	seizure	prediction	algorithms,	
guidelines	and	statistical	frameworks	have	been	proposed	[15-20].	

Generally,	 the	 guidelines	 proposed	 by	 Mormann	 et	 al.	 [14]	
as	 requirements	 for	 a	 practical	 prediction	 method	 can	 be	

summarized as follows: 

• The	prediction	power	of	an	algorithm	should	be	demonstrated	
through	prospective	randomized	controlled	tests	using	long-
lasting,	continuous	and	unseen	EEG	recordings.

• Test	data	should	be	independent	from	any	training	data	that	
is	used	to	optimize	the	algorithm.	

• The	performance	of	an	algorithm	should	be	reported	in	terms	
of	sensitivity	and	specificity	on	the	test	data.	

• Since	an	average	of	3.6	 seizures	per	day	 (i.e.,	 0.15	 seizures	
per	hour)	 is	 recorded	during	epilepsy	monitoring	 [21],	 false	
prediction	rates	which	are	measure	specificity	above	0.15/h	
are	deemed	questionable.	

• For	 algorithms	designed	 to	drive	 interventional	 devices	 the	
minimum	 intervention	 time	 (IT)	 defined	 as	 the	 minimum	
interval	between	an	alarm	and	the	beginning	of	the	prediction	
horizon	 [11]	 must	 be	 used	 as	 additional	 constraint	 when	
evaluating	seizure	prediction	performance.

After	the	introduction	of	the	seizure	prediction	method	guidelines	
discussed above, many researchers have published series of 
articles	showing	various	 level	of	conformity	to	these	guidelines	
and	utilizing	several	time,	frequency	and	time-frequency	domain	
techniques either in a linear or nonlinear	 fashion	 [7,22,23].	
Despite the promising results reported in these research works, 
there	still	seems	to	be	no	end	in	sight	to	the	seizure	prediction	
challenge as no method exists to date that is robust and consistent 
enough	 for	 clinical	 deployment.	 Therefore,	 there	 is	 need	 to	
explore	and	exploit	new	methods	 for	seizure	prediction.	 In	the	
current	 study	 a	 new	 seizure	 prediction	 approach	 is	 presented	
following	 the	 seizure	 prediction	 guidelines	 described	 above.	
Since	scalp	and	intracranial	EEG	possess	a	characteristic	pattern	
that varies across individuals with epilepsy both in non-seizure 
and	seizure	states	[24],	the	method	presented	here	resulting	in	
seizure	prediction	algorithms	is	patient	specific.

The	 method	 uses	 state	 of	 the	 art	 unsupervised	 feature	
representation	learning	techniques	(reconstruction	independent	
component	analysis	[25]	and	sparse	filtering	[26])	in	an	adaptive	
manner	 to	obtain	useful	 representation	of	a	newly	engineered	
EEG	feature:	Normalized	Logarithmic	Wavelet	Packet	Coefficients	
Energy	 Ratio	 (NLWPCER)	 which	 is	 derived	 from	 EEG	 Wavelet	
Packet	Transform	[27]	to	predict	seizures.	Unsupervised	feature	
representation	 learning	 consists	 of	 set	 of	 methods	 that	 map	
input features (engineered or “low level features”) to new output 
features	 (“high	 level	 features”)	without	 any	 information	 about	
class	labels	(i.e.,	pre-siezure	or	normal)	of	data.	Coates	et	al.	[28]	
clearly showed that very simple unsupervised learning algorithms 
(such as k-means clustering), when properly tuned, can generate 
representations	of	the	data	that	allow	even	basic	classifiers,	such	
as a linear support vector machine, to achieve state-of-the-art 
performances.	The	general	 idea	behind	representation	learning	
is	to	learn	a	transformation	that	maps	data	in	a	low-level	feature	
(engineered features) space into high level feature space where 
classification	rule	is	easier	to	learn,	and	the	generalizing	ability	of	
classifier	is	improved
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Specifically,	 sparse	 filtering	 and	 reconstruction	 independent	
component	analysis	were	used	to	improve	classification	accuracy	
of	normal	and	pre-seizure	intracranial	EEG	(iEEG)	feature	vectors.	
In	addition,	 the	present	 study	seeks	 to	carry	out	a	prospective	
seizure	 prediction	 study	 on	 long	 term	 scalp	 EEG	 (sEEG)	
recordings	of	patients	with	 intractable	seizures.	Scalp	EEG	data	
made	 available	 for	 researchers	 by	 Massachusetts	 Institute	 of	
Technology	(MIT)	and	Children’s	Hospital	Boston	(CHB)	was	used.	
The	database	consists	of	scalp	EEG	recordings	from	twenty-three	
patients	with	intractable	seizures.

To	test	the	proposed	method	for	prospective	seizure	prediction,	
two	classifiers:	support	vector	machine	(SVM)	and	artificial	neural	
network (ANN) were developed and trained to recognize and 
classify	normal	and	pre-seizure	EEG	feature	vectors.	Results	from	
model	 evaluation	as	well	 as	other	unresolved	 issues	 in	 seizure	
prediction	 problem	 such	 as	 sensitivity	 of	 seizure	 parameters	
especially	 the	 prediction	 time	 on	 the	 theoretical	methodology	
used	 for	 prediction	 are	 discussed.	 The	 performance	 of	 the	
proposed method was compared with other published methods.

Methodology
We present a detailed account of the proposed seizure 
prediction	method.	Described	 in	 the	method	are	 three	distinct	
novel	 contributions	 to	 seizure	 prediction	 studies.	 In	 section	
2.2.1,	a	newly	engineered	EEG	feature	(Normalized	Logarithmic	
Wavelet	Packet	Coefficients	Energy	Ratio,	NLWPCER)	for	seizure	
prediction	is	introduced.	In	section	2.2.2,	the	use	of	two	powerful	
feature	learning,/representation	algorithms	(Sparse	Filtering	and	
Reconstruction	Independent	Component	Analysis)	is	introduced	
in	 seizure	 prediction	 studies	 for	 high	 level	 feature	 extraction.	
Feature learning algorithms have been shown to improve 
computer	 vision	 (image	 recognition	 or	 classification)	 tasks	 and	
speech	recognition	tasks	 in	recent	studies	[25,29-31].	RICA	and	
SF	learned	representations	lead	to	improved	preictal	(presiezure)	
and	 normal	 (interictal)	 classification	 accuracies.	 Lastly,	 optimal	
hyperparameters	 configuration	 of	 the	 representation	 learning	

function	 (adaptation)	 and	 classification	 algorithm	 used	 for	 the	
proposed	 seizure	 prediction	 method	 were	 obtained	 through	
Bayesian	 optimization	 technique.	 Figure 1	 gives	 schematic	
representation	of	the	proposed	method.	The	detailed	procedure	
is presented in what follows.

Dataset description and extraction
One	of	the	very	few	publicly	available	EEG	recordings	to	researchers	
is	 the	 Children’s	 Hospital	 Boston	 –	 Massachusetts	 Institute	 of	
Technology	 (CHB-MIT)	 dataset.	 The	 database	 consists	 of	 scalp	
EEG	(sEEG)	recordings	of	23	patients	suffering	 from	 intractable	
epileptic	seizures.	In	total	the	recordings	span	approximately	982	
hours	and	contains	198	seizures.	All	signals	were	sampled	at	256	
samples	 per	 second	with	 16-bit	 resolution	 over	 23	 electrodes.	
The	 International	 10-20	 system	 of	 EEG	 electrode	 positions	
and	 nomenclature	 was	 used	 for	 these	 recordings.	 The	 data	 is	
grouped into cases with each case containing between 9 and 
42	 continuous	 .edf	 (European	 data	 format)	 files	 from	 a	 single	
patient.	 Information	 about	 the	 elapsed	 time	 in	 seconds	 from	
the	beginning	of	each	.edf	file	to	the	beginning	and	end	of	each	
seizure	contained	in	it	is	also	made	available	in	the	dataset.	The	
EEG	data	can	be	accessed	through	the	PhysioNet	website:	http://
physionet.org/physiobank/database/chbmit/  

For	some	files	 in	the	dataset,	seizures	occur	 in	clusters,	that	 is,	
one or more seizure events happened very close to a leading 
seizure. A leading seizure is one that is far away from the last 
seizure but followed closely by other seizures thereby ensuring 
moderate	mixture	of	postictal	(post	seizure),	interictal	(normal)	
and	preictal	(presiezure)	dynamics.	The	ictal	(seizure)	times	have	
been	clearly	defined	 in	 the	dataset	by	experts	but	no	mention	
of	 the	 preictal	 and	 postictal	 times	 were	 made.	 Therefore,	 25	
minutes	of	postictal	data	and	60	minutes	of	preictal	data	were	
considered.	 In	 order	 to	 allow	 for	 therapeutic	 intervention,	 5	
minutes of data immediately preceding seizure was not included 
in	the	preictal	data.	The	remaining	data	were	then	taken	as	the	
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interictal.	 Only	 patients	 with	 at	 least	 2	 seizures	 separated	 by	
at least a 2-hr period have their data extracted and used for 
this	 study.	 Approximately	 187hours	 of	 EEG	 data	 containing	 55	
seizures	were	set	aside	as	the	training	dataset	while	the	testing	
set	consist	of	545	hours	of	continuous	EEG	data	with	43	seizure	
events.	 EEG	 data	 in	 the	 .edf	 files	were	 converted	 into	Matlab	
files	 (.mat)	 through	BIOSIGtoolbox	 interface	 for	 EEGLAB	 in	 the	
Matlab/Simulink	 environment.	 Before	 the	data	were	 extracted	
artefact	removal	add-ins	in	EEGLAB	such	as	CLEAN	and	ARS	were	
used to remove artefacts from the data. Table 1 below reports 
the	EEG	data	from	the	CHB-MIT	dataset.

Feature extraction
Feature engineering (Low level features):	 The	 importance	
of	 bivariate	 measure	 profiles	 or	 features	 have	 already	 been	
demonstrated	 in	 several	 seizure	 prediction	 studies.	 These	
features	are	used	to	study	the	temporal	evolution	of	interactions	
between	 different	 brain	 regions	 as	 seizure	 events	 develop	
thereby	tracking	changes	in	EEG	recordings	in	both	temporal	and	
spatial	dimensions.	A	novel	bivariate	measure	named	normalized	
logarithmic	wavelet	packet	coefficients	energy	ratio	(NLWPCER)	
is	 defined	 and	 used	 in	 this	 work.	 This	 feature	 measures	 the	
ratio	 of	 wavelet	 packet	 coefficients	 energy	 of	 relevant	 EEG	
spectral	 bands	 i.e.,	 delta	 (δ),	 theta	 (θ),	 alpha	 (α)	 and	 beta	 (β)	
whose frequency ranges are 0-4 Hz, 4-8 Hz, 8-15 Hz and 15-30 
Hz	respectively	across	the	bands	and	between	EEG	channels.	A	

window length of 5seconds or 1280 samples without overlap 
was	used	in	the	calculation	of	the	NLWPCER	features.	For	each	
window	and	 in	all	 channels,	 full	wavelet	packet	decomposition	
was carried out, then normalized logarithmic wavelet packet 
coefficient	energy	was	extracted	for	the	relevant	decomposition	
nodes.	 The	 normalized	 logarithmic	 wavelet	 packet	 coefficient	
energy is given by
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m n

zx  is the NLWPCER features calculated for spectral 
band m of an epoch in channel y and spectral band n of an epoch 
with	equal	time	index	in	channel	z.	This	feature	gives	the	cross	
energy	 information	 not	 just	 between	 two	 channels	 but	 also	
between frequency bands across channels. It is hoped that this 

Patient Case Sex Age (yrs) Number of Seizures Duration of Seizure (hh:mm:ss) Ictal Duration (min)
1 1 F 11 7 40:33:08 7.37
 1 F 13 4 32:49:49 3.32
2 2 M 11 3 35:15:59 2.87
3 3 F 14 7 38:00:06 6.7
4 4 M 22 4 156:03:08 6.3
5 5 F 7 5 39:00:10 9.3
6 6 F 1.5 10 66:44:06 2.55
7 7 F 14.5 3 67:03:08 5.42
8 8 M 3.5 5 20:00:23 15.32
9 9 F 10 4 67:52:18 4.6

10 10 M 3 7 50:01:24 7.45
11 11 F 12 3 34:47:37 13.45
12 12 F 2 40 23:41:40 24.58
13 13 F 3 12 33:00:00 8.92
14 14 F 9 8 26:00:00 2.82
15 15 M 16 20 40:00:36 33.2
16 16 F 7 10 19:00:00 1.4
17 17 F 12 3 21:00:24 4.58
18 18 F 18 6 35:38:05 5.28
19 19 F 19 3 29:55:46 3.93
20 20 F 6 8 27:36:06 4.9
21 22 F 9 3 31:00:11 3.4
22 23 F 6 7 26:33:30 7.04
23 24   16 21:17:47 8.52

 Total 198 982:56:07 193.52
*Cases	1	and	2	belong	to	the	same	patient	(patient	1)	taken	at	a	2-year	interval	from	each	other.	Therefore,	the	total	number	of	patients	is	23.	*The	
age	and	sex	information	for	case	24	(patients	23)	was	not	made	available	in	the	database.

Table 1	Information	of	patients	in	(1)	CHB-MIT	dataset	(all	24	cases)	(2)	this	study	(red).	
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new	feature	will	find	preictal	trends	that	can	be	used	for	seizure	
prediction.	Calculating	the	NLWPCER	measures	between	two	EEG	
channels for P spectral bands give rise to P2 bivariate features 
therefore if P spectral bands are considered and Q channels 
are	studied	then	all	possible	pair	wise	combinations	of	spectral	
bands and channels will produce ( ) ( )2

2
2

1
2

Q p Q Q
p

× −
× = 	feature	time	

series. With 4 spectral bands and 23 recording channels a total 
of 4048 NLWPCER	feature	time	series	were	obtained.	To	further	
reduce	the	effect	of	noise	and	artefacts,	each	feature	time	series	
was	smoothed	with	a	Gaussian-weighted	moving	average	filter	
with a window length 15. Furthermore, each feature vector was 
normalized	into	the	interval	[0-1].

Feature representation learning (High level features): 
Furthermore,	 good	 data	 representation	 for	 classification	 was	
learned	by	extracting	high	level	features	through	feature	learning	
techniques.	 Two	 newly	 introduced	 algorithms	 for	 extracting	
high	 level	 features	 are	 the	 sparse	 filtering	 (SF)	 algorithm	 and	
reconstruction	 independent	 component	 analysis	 (RICA).	 The	
appropriate feature learning technique (SF or RICA) was chosen 
on	a	per	patient	basis	through	Bayesian	optimization	procedure	
which	searches	among	the	following	feature	extraction	function	
hyperparameters:	 iteration	 limit,	 solver	 (RICA	 or	 SF)	 and	
number of learned feature, q)	 effectively.	 	 SF	 ensures	 good	
data	 representation	 for	 classification	 purpose	 by	 conducting	 a	
nonlinear map of data from low level feature space into a new 
higher or lower dimensional high-level feature space. RICA does 
the	 same	 by	 conducting	 a	 linear	map.	 SF	 and	 RICA	 algorithms	
were	implemented	in	Matlab	through	the	sparsefilt/rica	functions	
respectively.	These	functions	take	as	input	arguments	matrix,	X	
of low-level feature data containing p (4048) features and q, the 
number	of	high-level	features	to	be	extracted	from	X.	Therefore,	
sparsefilt/rica	learns	a	p-by-q	matrix	of	transformation	weights,	
W.	For	undercomplete	or	overcomplete	feature	representations,	
q can be less than or greater than the number of original predictor 
variables	(features),	respectively.	The	Matlab	function	transform	
completes	the	process	by	transforming	X	to	the	new	set	of	high-
level	features	by	using	the	learned	transformation	weights.

Following	 the	 feature	 learning	 task	 all	 derived	 feature	 time	
series were exported into excel to form feature vectors and 
consequently	 training	 and	 testing	 dataset	matrices.	 Data	were	
arranged	 such	 that	each	 row	 in	 the	matrices	 is	 an	observation	
and each column represent a variable (i.e., feature), for example 
a	1-hour	long	raw	data	file	generated	dataset	matrix	of	dimension	
720 by q.

Labelling each observation (Data instance) 
In	the	seizure	prediction	experiments,	preictal	time	(time	period	
immediately prior to 5 minutes before seizure onset believed 
to	hold	predictive	markers	of	 seizure	activity)	 are	assumed	 for	
each	patient.	In	this	scheme	all	observations	in	the	time	period	
65-5	minutes	before	seizure	onset	are	labelled	as	preictal	state	
data	 instances	 while	 other	 observations	 before	 the	 preictal	
times	but	after	the	postictal	period	are	labelled	as	interictal	state	
data	instances.	The	ictal	and	postictal	data	were	not	included	in	
the training set since our aim is to predict seizure events.  An 

observation	or	data	instance	is	a	feature	vector	associated	with	a	
specific	short	time	interval	(i.e.,	5	secs	in	this	work).	By	assuming	
this	preictal	time	this	work	tries	to	investigate	the	possibility	of	
predicting	seizure	events	65-5	minutes	in	advance.

Classifier design (SVM/ANN)
Model learning:	 The	 proposed	 seizure	 prediction	 model	 uses	
binary	 support	 vector	 machines	 (bSVM)	 classifier.	 The	 bSVM	
classifier	 was	 implemented	 in	Matlab	 using	 the	 statistical	 and	
machine	learning	toolbox	functions.	A	Gaussian	kernel	specifically	
the	radial	basis	function	(RBF)	was	chosen	as	the	kernel	function	
after	preliminary	experiments	on	all	cases	reveal	mean	accuracy	
results	 of	 76.7%	 (s.d.,	 8.4%),	 89%	 (s.d.,	 5.3%)	 and	 98.5%	 (s.d.	
3.7%)	 respectively	 for	 linear,	polynomial	 and	Gaussian	 kernels.	
Since	data	 in	 seizure	prediction	studies	are	usually	unbalanced	
(i.e., more interictal data and less preictal and ictal data) and 
classification	algorithms	tend	to	produce	greater	accuracy	for	the	
class with more training samples, a down sampling of the interictal 
samples was carried out to obtain a balance between the classes 
during	training.	However,	during	testing	no	such	down	sampling	
was	 done.	 The	 proposed	 model	 uses	 Bayesian	 optimization	
technique in Matlab to tune the SVM hyper-parameters ‘Lamda’, 
λ	and	‘Sigma’,	σ	independently	for	each	patient.	This	 is	a	novel	
contribution	 in	 seizure	 prediction	 studies	 as	 earlier	 studies	
uses	Grid	search	optimization	technique.	Bayesian	optimization	
maintains	 a	 Gaussian	 process	model	 of	 the	 objective	 function	
and	 uses	 objective	 function	 evaluations	 to	 train	 the	 model.	
Parameter	 λ	 controls	 the	 regularization	 strength	 of	 the	model	
while	parameter	σ	controls	the	scale	of	kernel	function.	

An	artificial	neural	network	(ANN)	classifier	was	also	created	and	
trained	using	the	neural	pattern	recognition	toolbox	 in	Matlab.	
A two-layer feed-forward network, with sigmoid hidden and 
softmax	output	neurons	was	created.	The	network	has	10	hidden	
and	 2	 output	 neurons	 and	was	 trained	 using	 scaled	 conjugate	
gradient	backpropagation.	Following	the	training	of	the	predictive	
models,	 their	performances	were	 tested	with	 the	 classification	
and	prediction	of	seizures	in	the	unseen	testing	dataset.

Post processing classifier output (Regularization): In order to 
enhance	prediction	performance	and	reduce	false	predictions	the	
algorithm implements a post processing scheme which involves 
counting	the	number	of	samples	classified	as	preictal.	A	moving	
window	whose	size	corresponds	to	the	assumed	preictal	time	is	
considered.	In	each	window	a	measure	known	as	the	firing	power	
(fp)	[32,33]	is	computed.	This	measure	quantifies	the	amount	of	
samples	classified	as	preictal	and	is	defined	by

[ ] [ ]n

k n
o k

fp n τ

τ
= −= ∑

Where fp[n]	 is	 the	 firing	 power	 of	 the	 classifier’s	 output	 at	
discrete	time	n,	τ,	is	the	number	of	samples	corresponding	to	the	
preictal	time	considered	and	o[k]	is	the	classifier	output.	To	make	
fp[n]	 a	 normalized	 function	 between	  and  the value 1 was 
assigned	to	the	classifier	output	if	a	sample	is	classified	as	preictal	
and the value 0 otherwise. Alarms are then raised when the fp[n] 
function	exceeds	a	certain	threshold	defined	as	a	percentage	of  
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which	is	the	maximum	value	of	the	firing	power	function.	

Performance descriptors
The	performance	of	the	new	prediction	algorithm	was	evaluated	
using	 two	 descriptors:	 sensitivity	 (SS)	 which	 measures	 the	
percentage	of	predicted	seizures	and	false	prediction	rate	(FPR)	
which	measures	the	amount	of	false	alarm	raised	per	unit	time	
(usually	 1	 hour).	 In	 order	 to	 comply	 with	 seizure	 prediction	
characteristics	phenomenon,	the	seizure	occurring	period	(SOP),	
an	important	yardstick	upon	which	our	performance	metrics	are	
measured	was	defined.	The	SOP	is	the	time	period	during	which	
a seizure is expected to occur. 

Statistical validation
The	 proposed	 seizure	 prediction	 algorithm	 was	 validated	 by	
comparing its performance against that of a random predictor, 
the	 analytic	 random	 predictor	 [34].	 the	 probability	 of	 at	 least	
predicting	n out of seizures using  independent features by a 
random	predictor	is	given	by	the	Binomial	distribution	

{ } ( ) ( ), , ,P 1 1
d

N jN j
j

j ñ
p d n N P P −

≥

 
= − − 

 
∑

Where parameter P	 of	 the	 distribution	 approximated	 by	
1 FPR SOPp e− ×= − was	 calculated	 for	 each	patient	using	 the	FPR 

and the number of correctly predicted seizures n	for	that	patient	
by	the	proposed	method.	At	a	significant	level	α	=	0.05	the	upper	
critical	sensitivity	of	the	random	predictor	is	given	as	

{ }{ }arg max , , ,P 0.05
100%n
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p d n N
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N
>

= ×

The	 performance	 of	 the	 proposed	 seizure	 prediction	 method	
is	 considered	 significantly	 better	 than	 chance	 if	 the	 sensitivity	
achieved by the method SSM is greater than that of a random 
predictor.

Consistency of feature representation learning
In	this	work,	the	use	of	feature	representation	learning	(or	high-
level	feature	extraction)	in	seizure	prediction	studies	is	introduced.	
To	establish	the	usefulness	of	the	method	there	is	need	to	show	

Feature 
Extraction

Case

A B C D E F
Low level 
features

77 features earlier 
studied

77 features earlier 
studied

24 NLWPCE 
features 24 NLWPCE features 160 NLWPCER 

features
160 NLWPCER 

features

High level 
features Nil

Extracted via 
Sparse	filtering	or	
Reconstruction	

independent component 
analysis	(i.e.	patient	

specific)

Nil

Extracted via 
Sparse	filtering	or	
Reconstruction	

independent component 
analysis	(i.e.	patient	

specific)

Nil

Extracted via 
Sarse	filtering	or	
Reconstruction	

independent 
component analysis 
(i.e.	patient	specific)

Table 2	Six	different	schemes	used	for	comparison	between	seizure	predictions	study	using	only	engineered	features	and	engineered	features	plus	
feature	representation	learning	(FRL).	
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The	fp	function	(blue	curve)	for	55	h	continuous	recordings	of	test	data	for	case	4	describing	the	mechanism	for	alarm	generation.	
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mark	the	times	when	alarms	are	raised	and	horizontal	dashed	line	indicate	the	threshold	on	fp	for	raising	an	alarm.	There	are	3	true	
alarms	and	2	false	alarms	in	entire	period.

Figure 2
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that	the	method	is	consistent.	To	do	this,	more	examples	of	the	
impact	of	feature	representation	learning	on	engineered	features	
should	be	studied.	Six	different	schemes	(scheme	A	to	scheme	F)	
were	considered.	In	schemes	A,	C	&	E	different	sets	of	engineered	
features	were	extracted	and	used	 for	 seizure	prediction	across	
all	patients.	 Schemes	B,	D	&	F	 consisted	extracting	engineered	
features	as	in	schemes	A,	B	and	C	respectively	but	with	additional	
patient	 specific	 feature	 representation	 learning	 through	 sparse	
filtering	 or	 reconstruction	 independent	 component	 analysis	
algorithms	before	 being	 used	 for	 seizure	 prediction.	 Scheme	 F	
is	the	particular	method	used	in	this	work.	The	prediction	results	
obtained from all the schemes were then compared. Table 2 
gives	information	about	the	extracted	features	for	each	scheme.

Sensitivity of seizure parameters to theoretical methodology 
used

In	a	review	of	dynamical	systems	modeling	of	epileptic	seizures	for	
onset	prediction,	Agboola	et	al.	[35]	discussed	some	unresolved	
issues	 in	 the	 seizure	 prediction	 problem.	 One	 of	 the	 issues	
bordered	 on	 predictive	 onset	 times	 obtained	 from	 different	
seizure	 prediction	 algorithms.	 The	 predictive	 times	 reported	
in several of the works cited in the paper were found to vary 
substantially	from	the	order	of	a	few	seconds	to	several	hours.	
Thus,	it	has	been	hypothesized	that	seizure	prediction	parameters	
especially	the	seizure	onset	prediction	time	are	sensitive	to	the	
theoretical	methodology	used	for	seizure	prediction.	To	observe	
this	phenomenon	in	the	proposed	prediction	method,	the	trends	
of	average	prediction	times	achieved	through	the	SVM	classifier	
for	 different	 schemes	 discussed	 in	 section	 3.8	 were	 observed	
across	schemes	(A,	B,	E	and	F)	and	patients

S/N Case Tst. Rec 
(hr)

No. Tst. 
Seiz.

SVM ANN

SS (%) FPR (per 
hour)

SSRP 
(%)

SOP 
(Min) p-value SS (%) FPR (per 

hour)
SSRP 
(%)

SOP 
(Min) p-value

1 1 32 2 100 0.03 50 30 0.001 50 0.02 0 20 0.02
2 2 27 2 100 0.04 0 50 0.02 100 0.14 50 20 0.01
3 3 30 2 100 0.06 0 20 0.015 100 0.01 0 30 0.035
4 4 55 3 100 0.04 25 30 0.012 50 0.18 25 40 0.013
5 5 25 3 66.7 0.11 33.3 30 0.015 33.3 0.21 66.7 30 0.025
6 6 37 4 100 0.17 50 40 0.031 50 0.14 0 40 0.041
7 7 28 1 100 0.03 0 40 0.034 100 0.12 0 30 0.014
8 9 42 2 50 0.06 50 20 0.004 50 0.1 50 20 0.012
9 10 26 3 100 0.18 66.7 30 0.042 100 0.08 66.7 30 0.034

10 12 19 4 100 0.02 0 30 0.004 100 0.15 0 40 0.001
11 13 33 2 100 0.01 50 20 0.023 50 0.21 0 30 0.002
12 14 40 2 50 0.01 0 40 0.003 50 0.02 0 20 0.011
13 15 23 4 100 0.07 0 40 0.033 100 0.12 0 30 0.003
14 18 21 2 100 0.21 0 20 0.002 100 0.22 0 30 0.019
15 20 39 2 50 0.07 0 40 0.007 100 0.19 100 20 0.027
16 22 32 2 100 0.02 0 30 0.011 50 0.18 0 40 0.014
17 24 36 3 66.7 0.19 33.3 20 0.003 100 0.14 33.3 20 0.021

Mean  32.06 2.5 87.26 0.08 21.08 31.18 0.0153 75.49 0.13 23.04 28.82 0.0178
Sum  545 43           

SS:	Sensitivity;	FPR:	False	Prediction	Rate;	SSRP:	Sensitivity	of	Random	Predictor;	SOP:	Seizure	Occurring	Period;	p-value:	p-value	of	the	random	
predictor.

Table 3	Seizure	prediction	results	for	17	cases	studied.	

Results and Discussion
Figure 2 is a graphical display of a typical result obtained from 
the	evaluation	of	 the	proposed	method	used	 in	 this	work	with	
the	 testing	 dataset	 of	 one	 of	 the	 cases	 studied	 (case	 4).	 The	
highlighted	 areas	 show	 60	 min	 preictal	 periods.	 Red	 vertical	
arrows	 indicate	the	alarms	raised.	Brown	vertical	 lines	 indicate	
the seizure onsets. Horizontal dashed line marks the threshold 
on fp	function	for	alarm	generation.	For	this	case,	the	threshold	
was	set	at	0.5.	There	are	3	true	alarms	(i.e.,	alarms	followed	by	
seizures) raised and 2 false alarms (i.e., alarms not followed by 
seizures)	 in	 the	 entire	 testing	 period.	 It	 should	 be	 noted	 that	
proper	 setting	 of	 the	 threshold	 for	 raising	 alarms	 influences	
prediction	results.	If	it	is	too	high	the	sensitivity	of	the	model	will	
be	low	and	if	it	is	too	low	the	model	suffers	high	false	prediction	
rates.	Trade–off	is	necessary	in	setting	the	threshold	value.

Table 3	 reports	 the	 results	 of	 the	 seizure	 prediction	 study	 in	
terms	of	sensitivity	and	false	prediction	rate	obtained	by	the	two	
classification	algorithms:	 	 support	 vector	machine	and	artificial	
neural	 network	 for	 each	 patient.	 Using	 the	 ANN	 classifier,	 in	
average	 75.5%	 of	 seizures	 in	 the	 testing	 set	 were	 successfully	
predicted	(32	out	of	43	seizures	within	545	hours	of	continuous	
EEG	data)	with	an	average	false	prediction	rate	of	0.13h-1.	The	SVM	
classifier	gave	a	better	performance	with	an	average	sensitivity	of	
87% and FPR of 0.08h-1.	Results	from	model	validation	against	an	
analytical	 random	predictor	 (ARP)	showed	that	 for	all	patients,	
using	the	two	classifiers	the	observed	sensitivities	exceeded	the	
critical	sensitivities	of	the	ARP.	The	only	exception	is	in	the	case	
of	patient	5	using	ANN	classifier	where	the	observed	sensitivity	is	
33.3%	while	the	ARP	gives	66.7%.	The	significance	level,	αRP used 
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Bar	charts	summarizing	(a)	Sensitivity	and	(b)	False	Prediction	Rate	results	achieved	by	proposed	seizure	prediction	method	for	the	
17 cases studied.
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Figure 4
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for	the	test	is	0.05.	On	the	average	the	upper	critical	sensitivity	
of	 analytical	 random	 predictor was 21.1%, while that of the 
proposed	method	(for	SVM	classifier)	reached	87.3%.

Figures 3a and 3b	are	bar	charts	comparing	sensitivity	and	FPR	
results	 obtained	 for	 the	17	patients	 (cases)	 studied	using	 SVM	
and	ANN	classifiers	 respectively.	 For	both	 classifiers’	 variability	
in	 the	 sensitivities	 and	 FPR	 is	 observed.	 Factors	 that	 could	 be	
responsible	for	the		variability	may	include	(i)	patient	dependent	
seizure	 characteristics	 not	 captured	 by	 the	 method	 and	 (ii)	
presence	of	seizure	dependent	characteristics.	

Patient-dependent seizure characteristics: We have assumed 
a	uniform	preictal	period	 (60	min)	 for	all	patients	 in	 this	 study	
but this might not be the case in reality as preictal period may 
vary	 from	 patient	 to	 patient.	 So	 also,	 we	 assumed	 a	 uniform	
threshold value (0.05) on the fp	 function	 for	 alarm	generation	
which	may	be	not	produce	the	best	result	for	each	patient.	But	
could	the	threshold	be	learned	or	suggested	for	each	patient	by	
our	method?	This	is	possible	if	the	classifier	output	regularization	
function	 and	 alarm	 raising	 formality	 are	 configured	 in	 the	
algorithm	during	training.	The	threshold	parameter	would	then	
be	entered	among	other	hyperparameters	to	search	for	optimal	
sensitivity	and	false	prediction	rate	for	each	patient.

Seizure dependent characteristics: Seizure dependent 
characteristics	 are	 also	 believed	 to	 exist	 for	 individual	 patient.	

Therefore,	 the	 pattern	 learned	 by	 classifier	 trained	 on	 some	
seizures	 of	 a	 patient	 may	 not	 be	 useful	 when	 evaluating	 the	
classifier	on	other	seizures	from	the	same	patient.

Engineered Features (Low level features) and 
Feature Representation Learning (High level 
features)
Figures 4a and 4b are box and whiskers plots comparing the 
results	 of	 seizure	 prediction	 in	 terms	 of	 sensitivity	 and	 false	
prediction	 rate	 respectively	 obtained	 for	 all	 patients	 in	 all	
the schemes. It is observed from the median and minimum 
values	 of	 sensitivity	 and	 FPR	 that	 schemes	 involving	 feature	
representation	 learning	 keep	 outperforming	 their	 respective	
counterpart	 schemes	 without	 feature	 representation	 learning.	
This	 is	 because	 feature	 representation	 learning	 particularly	
as	 obtained	 by	 sparse	 filtering	 or	 reconstruction	 independent	
component	analysis	is	able	to	simplify	classification	rule	learning	
task during training by enforcing sparsity and over completeness 
properties	on	the	learned	features.	These	two	properties	capture	
the	underlying	data	distribution	and	prevent	overfitting	during	
the training thereby improving model generalizing ability when 
presented with previously unseen data.
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Sensitivity of seizure parameters to theoretical 
methodology used
The	 average	 seizure	 anticipation	 times	 of	 the	 SVM	 classifier	 is	
shown in Figure 5a	 for	 all	 testing	 set	 recordings	 using	 feature	
extraction	schemes	A,	B,	E	and	F	described	in	Table 2. Each row 
shows	the	average	prediction	time	achieved	by	the	system	with	
the	 feature	 extraction	 schemes	 for	 all	 the	 recordings	 from	 a	
single	 patient.	 The	 vertical	 red	 line	 indicates	 the	 seizure	onset	
time.	For	better	comprehension	the	trends	of	average	prediction	
times	across	the	schemes	and	patients	are	presented	in	Figures 
5b and 5c	 respectively.	 The	 pattern	 in	 Figure 5	 looks	 chaotic	
for	all	patients	as	we	go	from	left	to	right	(i.e.,	scheme	A	to	F).	
The	 spread	of	 the	 average	prediction	time	 for	 all	 the	 schemes	
is quite large. For instance, the minimum, mean and maximum 
values	for	schemes	B	and	E	are	5,	30.8,	46	min	and	9,	31.1,	47	
min	 respectively.	 This	 observation	may	be	pointing	 to	 the	 fact	
that	 the	 seizure	 prediction	 time	 is	 strongly	 dependent	 on	 the	
theoretical	 method	 employed.	 However,	 the	 means	 of	 the	
average	 prediction	 times	 for	 the	 schemes	 are	 29.7,	 30.8,	 31.1	
and	30.2	respectively.	These	values	are	very	close.	On	the	other	
hand,	 the	 pattern	 in	 Figure 5 is quite ordered with almost all 
schemes displaying upward and downward peaks for quite a 
number	 of	 the	 patients	 (especially	 patients	 2,	 4,	 8,	 10,	 11,	 15	
and	17).	This	observation	is	consistent	with	earlier	observations	
about	 the	patient	dependent	 characteristic	of	 seizures,	 that	 is,	
the	processes	leading	to	the	generation	of	epileptic	seizures	vary	
from	patient	to	patient.		Therefore,	each	scheme	captures	these	
different	mechanisms	at	different	but	close	times.	

Comparison of our method with other literature 
methods
In Table 3 the results of some of these methods are presented 
in comparison to the method proposed in this work. Although, 
it	is	only	a	general	comparison	due	to	the	different	epilepsy	data	
(sEEG	 or	 iEEG),	 patients	 and	 criteria	 (e.g.	 different	 prediction	
horizon	 and	 SOP)	 used	 for	 evaluation.	 It	 is	 generally	 observed	
that	performance	with	scalp	EEG	is	lower.	This	observation	may	
be	 explained	 in	 terms	 of	 the	 advantages	 of	 intracranial	 EEG	
(iEEG)	recording.	Firstly,	 iEEG	has	high	signal	to	noise	ratio	and	
secondly,	 it	 is	 a	 localized	 recording	 of	 the	 brain	 activity	which	

Year Authors Dataset (Source/type) Feature Classifier SS (%) FPR (per 
hour) SOP (min)

2016 Zhang et al. Freiburg/iEEG spectral powers SVM 100 0.03 50
2016 Zhang et al. MIT/sEEG spectral powers SVM 88.68 0.05 50

2017 Parvez et al. Freiburg/iEEG phase-match	error,	deviation,	
flunctuation LS - SVM 95.4 0.36 30

2017 Sharif et al. Freiburg/iEEG Fuzzy rules on Poncare plane SVM 91.8 0.05 15
2017 Arabi et al. Freiburg/iEEG univariate/bivariate	features Rule-based descision 86.7 0.126 30

2017 Bonyadi	et	al. Freiburg/iEEG Short	time	Fourier	Transform Convolutional	Neural	
Network 89.8 0.17 30

2017 Bonyadi	et	al. MIT/sEEG Short	time	Fourier	Transform Convolutional	Neural	
Network 86.1 0.09 30

2018 This	work MIT/sEEG NLWPCER + FRL SVM 87.26 0.09 31
2018 This	work MIT/sEEG NLWPCER + FRL ANN 75.5 0.13 29

Table 4	Comparison	between	results	obtained	from	earlier	published	seizure	prediction	method	and	the	proposed	method.

minimizes unwanted interferences from other brain sites on the 
signals	recorded	from	the	region	of	interest.	On	the	other	hand,	
Bandarabadi	[36]	reported	a	slightly	higher	performance	of	sEEG	
over	iEEG	and	argued	that	although	scalp	EEG	recording	cannot	
provide	 localized	neuronal	 potential	 activities,	 it	 can	present	 a	
more	 generalized	 spatiotemporal	 view	 of	 brain’s	 dynamical	
system (Table 4).

Hardware implementation of the proposed 
seizure prediction algorithm
One	 future	 goal	 of	 this	 research	 is	 to	 make	 a	 hardware	
implementation	 of	 the	 proposed	 seizure	 prediction	 algorithm.	
Hardware	 implementation	 of	 a	 seizure	 prediction	 algorithm	
is	essential	 in	order	 to	actualize	a	timely	response	or	 feedback	
aimed	at	warning	patients/caregivers	of	an	impending	seizure	or	
taking	an	action	leading	to	its	aversion.	But,	is	the	performance	
of the method proposed in this work good enough for hardware 
implementation?	 This	 question	 can	 be	 answered	 in	 the	 light	
of the performance of algorithms already in deployment 
onto	 seizure	 prediction	 devices.	 Mark	 et	 al.	 [37]	 conducted	 a	
multicentre	 clinical	 feasibility	 study	 to	 assess	 the	 safety	 and	
efficacy	 of	 a	 long-term	 implanted	 seizure	 advisory	 system	
designed to predict seizure likelihood. For the purpose, an 
algorithm	for	the	identification	of	periods	of	high,	moderate	and	
low	seizure	likelihood	was	established.	This	algorithm	which	was	
later	 used	 for	 the	 hardware	 implementation	 was	 reported	 to	
achieve	sensitivities	ranging	from	65-100%.	Also,	 in	a	thorough	
review of literature and contacts made with manufacturers of 
commercially	available	devices,	Van	de	Vel	et	al.	 [38]	 reported	
results	 of	 non-EEG	 based	 seizure	 detection	 devices	 as	 varying	
from	 between	 2.2%	 and	 100%	 sensitivity	 and	 between	 0	 and	
3.23	 false	 detections	 per	 hour.	 Furthermore,	 Isabell	 et	 al.	 [39]	
in	 their	bid	 to	engineer	a	mobile	 system	 for	 seizure	prediction	
used	a	deep	learning	classifier	which	was	trained	on	intracranial	
electroencephalography	(iEEG)	data	and	tested	on	held-out	data.	
The	algorithm	was	also	benchmarked	against	 the	performance	
of	 a	 random	 predictor.	 This	 algorithm,	 which	 was	 meant	 for	
deployment onto an ultra-low power neuromorphic chip for 
autonomous	 operation	 on	 a	 wearable	 device	 was	 reported	 to	
achieve	a	mean	sensitivity	of	69%	and	mean	time	in	warning	of	
27%.	In	summary,	with	an	average	sensitivity	and	false	prediction	
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rate	 of	 87%	 and	 0.08/hr	 respectively	 the	 performance	 of	 the	
proposed	algorithm	is	still	very	much	within	acceptable	range	in	
literature	and	could	be	deployed	for	use	in	a	seizure	prediction	
device. 

A few of such devices have already been manufactured and are 
presently available commercially. First of such devices is the RNS 
(response	neurostimulator)	 system	by	NeuroPace@.	 The	RNS	 is	
an advanced technology designed to detect abnormal electrical 
activity	 in	 the	 brain	 and	 respond	 by	 delivering	 imperceptible	
levels	of	electrical	stimulation	to	normalize	brain	activity	before	
an individual experience’s seizure. Also available in the market 
is	the	Activa	PC	+	S	(Primary	Cell	+	Sensing)	by	Medtronic@.	This	
device	also	monitors	brain	activities	and	sends	stimulation	pulses	
accordingly.	 Another	 therapeutic	 device	 which	 was	 recently	
introduced to the market by LivaNova@ is the Aspire SR (Seizure 
Response).	 The	device	 constantly	monitors	 the	heart	 beat	 and	
delivers	 stimulation	 pulses	 when	 it	 detects	 a	 rapid	 heart	 rate	
raise. Just recently, researchers at Eindhoven University of 
Technology	 (TU/e)	 developed	 a	 smart	 bracelet	which	 they	 call	
‘Nightwatch’.	The	device	combines	both	a	heart	rate	sensor	and	
a	motion	 sensor	 to	 look	 for	 both	 an	 unusually	 high	 heart	 rate	
as	well	as	the	rhythmic	jolting	characteristic	of	a	seizure	to	alert	
caregivers	only	of	a	patient’s	nighttime	epileptic	seizures.	

In	the	development	of	these	devices’	critical	issues	of	portability	
and	 power	 consumption	 are	 of	 utmost	 importance.	 The	 low	
power	 consumption	 property	 becomes	 even	 more	 desirable	
when the device is to be implanted in order to reduce the rate 
of	 routine	 follow	 up	 surgeries	 once	 the	 battery	 is	 discharged.	
Consequently,	an	 ideal	 seizure	prediction	algorithm	should	not	
be	 computationally	expensive	 thereby	 requiring	 low	power	 for	
its	 implementation.	 This	 makes	 computational	 expensiveness	
one of the deciding factors to consider in the development of 
seizure	prediction	algorithms.	Also,	this	is	the	reason	why	a	new	
EEG	feature	was	considered	in	the	present	study.	

For	instance,	we	have	reported	on	the	computation	time	on	77	
existing	extracted	EEG	features	 in	the	literature	on	a	computer	
with an intel@	Pentium@	P6200	processor	with	4	GB	of	RAM.	 It	
took approximately 20 seconds to calculate this feature for 3 
seconds	of	EEG	data	sampled	at	500	Hz	[40].	On	the	other	hand,	
wavelet	coefficients	 features	are	known	to	be	easy	and	 fast	 to	
compute	 hence	 their	 deployment	 in	 this	 study.	 The	 NLWPCER	
features	 proposed	 here	 is	 about	 50	 times	 faster	 to	 compute	
relative	to	data	window	length	of	3	seconds.

Conclusion
Scalp	 and	 intracranial	 EEG	 possess	 a	 characteristic	 pattern	
that varies across individuals with epilepsy both in non-seizure 
and	 seizure	 states.	 However,	 EEG	 recorded	 from	 an	 individual	
exhibit	 less	 variability.	 This	 fact	 motivated	 the	 development	
of	patient	 specific	 seizure	prediction	algorithms.	 In	 this	work	a	
novel	 patient-specific	 epileptic	 seizure	 prediction	 method	 has	
been	developed.	The	method	uses	state	of	the	art	unsupervised	
feature	 learning	 techniques	 to	 obtain	 useful	 representation	 of	
existing	and	newly	engineered	feature:	Normalized	Logarithmic	
Wavelet	Packet	Coefficients	Energy	Ratio	(NLWPCER)	to	predict	
seizures.	The	general	idea	is	to	learn	a	transformation	that	maps	
data in a low-level feature (engineered features) space into high 
level	feature	space	where	classification	rule	is	easier	to	learn	and	
generalizing	ability	of	classifier	is	improved.

A	support	vector	machine	classifier	with	Gaussian	kernel	trained	
using the training dataset to learn preictal and interictal feature 
vector	 patterns	 performed	 better	 than	 the	 ANN	 classifier	 also	
trained	for	the	same	task.	The	best	parameter	set	of	the	SVM	was	
obtained	 through	Bayesian	optimization	and	 the	output	of	 the	
classifier	was	further	regularized	to	reduce	false	prediction	rate	
during	testing.	Finally,	the	results	obtained	were	compared	with	
that	of	a	random	predictor	for	validation.	With	the	encouraging	
results obtained in this work it is believed that the proposed 
method is a step forward toward achieving a robust and 
consistent	real-time	portable	seizure	prediction	device	which	is	
suitable	for	clinical	applications.
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