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Representation Learning

Abstract
Epilepsy cannot be successfully treated through medications or resection in about 
30% of patients. Furthermore, an estimated 0.1 percent of epileptic patients suffer 
sudden deaths resulting from injuries sustained during seizures. For this reason, 
patients with intractable seizures need alternative therapeutic approaches. An 
engineered device tailored toward seizure prediction that warns patients of an 
impending seizure or that intervenes to prevent its occurrence may significantly 
decrease the burden of epilepsy. Although much research efforts have been 
directed at the development of a seizure prediction algorithm, a therapeutic or 
warning device that meets stringent clinical requirements is still elusive. In the 
present study a novel patient-specific seizure prediction method is proposed. The 
method is based on time-frequency analysis of scalp electroencephalogram (sEEG) 
and the use of state-of-the-art unsupervised feature representation learning 
techniques: reconstruction independent component analysis and sparse filtering. 
In a moving window analysis, a novel engineered bivariate EEG characterizing 
measure named Normalized Logarithmic Wavelet Packet Coefficient Energy Ratios 
(NLWPCER) was extracted from all possible combination of EEG channels and 
relevant frequency sub - bands. Thereafter unsupervised representation learning 
algorithm adapted to each patient through Bayesian optimization procedure was 
used to learn NLWPCER features representation or transformation suitable for 
data classification task. Two classification models: Artificial Neural Network (ANN) 
and Support Vector Machine (SVM) were developed and trained to learn preictal 
(pre-seizure) and interictal (normal) EEG feature vector patterns. The output of the 
classifiers was regularized through a post processing operation aimed at reducing 
false prediction rate (FPR) and making decision on the generation of prediction 
alarms. The proposed method was evaluated using approximately 545 h CHB-MIT 
scalp EEG recording of 17 patients with a total of 43 leading seizures.  On the 
average, with SVM classifier the proposed seizure prediction algorithm achieved a 
sensitivity of 87.26% and false prediction rate of 0.08h-1 while with ANN classifier 
the algorithm achieved average sensitivity and false prediction rate of 75.49% 
and 0.13h-1 respectively. The proposed method was validated using an Analytic 
Random Predictor (ARP). The results obtained in this work opens a pathway for 
a robust and consistent real-time portable seizure prediction device suitable for 
clinical applications.
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Logarithmic Wavelet Packet Coefficients Energy Ratios (NLWPCER); Feature 
representation learning
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Introduction
Epilepsy constitutes a chronic brain disorder. It affects almost 1% 
of the world’s population. This neurological ailment is associated 

with recurrent, unprovoked epileptic seizures resulting from a 
sudden disturbance of brain function. One particular disabling 
aspect of epileptic seizures is their sudden and unpredictable 
nature, limiting patients’ activities and resulting in poor quality 
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of life. Common treatment for epilepsy is through medication 
and surgery but these not only have grave repercussions or 
side effects [1] but also fail to satisfactorily control seizures in 
approximately one-third of affected patients. A reliable seizure 
prediction system based on electroencephalogram (EEG) may 
significantly enhance the quality of life and safety of sufferers 
and increase the chance of controlling seizures by administering 
therapeutic agents as early as possible. 

Seizure prediction is based on the hypothesis that there exists a 
transition state (preictal) between the interictal (normal) and the 
ictal (seizure) states. There are numbers of clinical evidence that 
support this hypothesis. These include increases in cerebral blood 
flow [2] and cerebral oxygenation [3]. Accordingly, researchers 
have invested a great deal of effort over the last decades on 
attempting to predict epileptic seizures based on EEG signals. 	

Le et al. [4] proposed a method to anticipate seizures using 
the similarity between an interictal reference and the current 
windows of EEG based on a nonlinear analysis of zero-crossing 
intervals. They applied this algorithm to scalp EEG signals from 
23 patients with temporal lobe epilepsy (TLE) which resulted 
in 96% sensitivity and an average anticipation time of 7 min. 
Analyzing depth EEG recordings from five patients with TLE, 
Iasemidis et al. [5] developed an adaptive seizure prediction 
method based on the convergence of the “short-term maximum 
Lyapunov exponents” of the critical electrodes. They reported 
82.6% sensitivity along with a false prediction rate of 0.17 h-1 
(preictal periods were not excluded) and an average prediction 
time of 100.3 min for a test dataset. Hively and Protopopescu 
[6] proposed a channel-consistent epileptic seizure prediction 
approach based on phase-space dissimilarity measures and 
applied it to surface EEG from 41 patients resulting in a sensitivity 
of 87.5% with a false positive rate of 0.021 h-1 and an average 
prediction time of ∼35 min. In a work reported by Chisci et al. 
[7], the performance of an algorithm based on AR modeling 
of EEG signals was assessed using intracranial recordings from 
nine patients. A nonlinear support vector machine (SVM) with a 
Gaussian kernel was employed to classify a feature vector made 
up of the Auto Regressive (AR) coefficients for each multichannel 
EEG epoch, where a Kalman filtering procedure was considered 
in the post processing step. The study reported 100% sensitivity 
and the average false prediction rate and average prediction 
time, respectively, ranging from 0 to 0.60 h-1 and ∼5 to 92 min.

Many of the early seizure prediction studies showed that features 
derived through linear and non-linear EEG analysis were 
successful in detecting changes within minutes to hours before 
seizure onset [8]. However, it was later discovered that these 
studies suffer from serious methodological and statistical flaws 
as later research works gave contradictory seizure predictability 
results [9-13]. Therefore, the question of seizure predictability 
appears open due mainly to methodological and statistical flaws in 
several of the literature reports [14]. To promote methodological 
quality and practical assessment of seizure prediction algorithms, 
guidelines and statistical frameworks have been proposed [15-20]. 

Generally, the guidelines proposed by Mormann et al. [14] 
as requirements for a practical prediction method can be 

summarized as follows: 

•	 The prediction power of an algorithm should be demonstrated 
through prospective randomized controlled tests using long-
lasting, continuous and unseen EEG recordings.

•	 Test data should be independent from any training data that 
is used to optimize the algorithm. 

•	 The performance of an algorithm should be reported in terms 
of sensitivity and specificity on the test data. 

•	 Since an average of 3.6 seizures per day (i.e., 0.15 seizures 
per hour) is recorded during epilepsy monitoring [21], false 
prediction rates which are measure specificity above 0.15/h 
are deemed questionable. 

•	 For algorithms designed to drive interventional devices the 
minimum intervention time (IT) defined as the minimum 
interval between an alarm and the beginning of the prediction 
horizon [11] must be used as additional constraint when 
evaluating seizure prediction performance.

After the introduction of the seizure prediction method guidelines 
discussed above, many researchers have published series of 
articles showing various level of conformity to these guidelines 
and utilizing several time, frequency and time-frequency domain 
techniques either in a linear or nonlinear fashion [7,22,23]. 
Despite the promising results reported in these research works, 
there still seems to be no end in sight to the seizure prediction 
challenge as no method exists to date that is robust and consistent 
enough for clinical deployment. Therefore, there is need to 
explore and exploit new methods for seizure prediction. In the 
current study a new seizure prediction approach is presented 
following the seizure prediction guidelines described above. 
Since scalp and intracranial EEG possess a characteristic pattern 
that varies across individuals with epilepsy both in non-seizure 
and seizure states [24], the method presented here resulting in 
seizure prediction algorithms is patient specific.

The method uses state of the art unsupervised feature 
representation learning techniques (reconstruction independent 
component analysis [25] and sparse filtering [26]) in an adaptive 
manner to obtain useful representation of a newly engineered 
EEG feature: Normalized Logarithmic Wavelet Packet Coefficients 
Energy Ratio (NLWPCER) which is derived from EEG Wavelet 
Packet Transform [27] to predict seizures. Unsupervised feature 
representation learning consists of set of methods that map 
input features (engineered or “low level features”) to new output 
features (“high level features”) without any information about 
class labels (i.e., pre-siezure or normal) of data. Coates et al. [28] 
clearly showed that very simple unsupervised learning algorithms 
(such as k-means clustering), when properly tuned, can generate 
representations of the data that allow even basic classifiers, such 
as a linear support vector machine, to achieve state-of-the-art 
performances. The general idea behind representation learning 
is to learn a transformation that maps data in a low-level feature 
(engineered features) space into high level feature space where 
classification rule is easier to learn, and the generalizing ability of 
classifier is improved
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Specifically, sparse filtering and reconstruction independent 
component analysis were used to improve classification accuracy 
of normal and pre-seizure intracranial EEG (iEEG) feature vectors. 
In addition, the present study seeks to carry out a prospective 
seizure prediction study on long term scalp EEG (sEEG) 
recordings of patients with intractable seizures. Scalp EEG data 
made available for researchers by Massachusetts Institute of 
Technology (MIT) and Children’s Hospital Boston (CHB) was used. 
The database consists of scalp EEG recordings from twenty-three 
patients with intractable seizures.

To test the proposed method for prospective seizure prediction, 
two classifiers: support vector machine (SVM) and artificial neural 
network (ANN) were developed and trained to recognize and 
classify normal and pre-seizure EEG feature vectors. Results from 
model evaluation as well as other unresolved issues in seizure 
prediction problem such as sensitivity of seizure parameters 
especially the prediction time on the theoretical methodology 
used for prediction are discussed. The performance of the 
proposed method was compared with other published methods.

Methodology
We present a detailed account of the proposed seizure 
prediction method. Described in the method are three distinct 
novel contributions to seizure prediction studies. In section 
2.2.1, a newly engineered EEG feature (Normalized Logarithmic 
Wavelet Packet Coefficients Energy Ratio, NLWPCER) for seizure 
prediction is introduced. In section 2.2.2, the use of two powerful 
feature learning,/representation algorithms (Sparse Filtering and 
Reconstruction Independent Component Analysis) is introduced 
in seizure prediction studies for high level feature extraction. 
Feature learning algorithms have been shown to improve 
computer vision (image recognition or classification) tasks and 
speech recognition tasks in recent studies [25,29-31]. RICA and 
SF learned representations lead to improved preictal (presiezure) 
and normal (interictal) classification accuracies. Lastly, optimal 
hyperparameters configuration of the representation learning 

function (adaptation) and classification algorithm used for the 
proposed seizure prediction method were obtained through 
Bayesian optimization technique. Figure 1 gives schematic 
representation of the proposed method. The detailed procedure 
is presented in what follows.

Dataset description and extraction
One of the very few publicly available EEG recordings to researchers 
is the Children’s Hospital Boston – Massachusetts Institute of 
Technology (CHB-MIT) dataset. The database consists of scalp 
EEG (sEEG) recordings of 23 patients suffering from intractable 
epileptic seizures. In total the recordings span approximately 982 
hours and contains 198 seizures. All signals were sampled at 256 
samples per second with 16-bit resolution over 23 electrodes. 
The International 10-20 system of EEG electrode positions 
and nomenclature was used for these recordings. The data is 
grouped into cases with each case containing between 9 and 
42 continuous .edf (European data format) files from a single 
patient. Information about the elapsed time in seconds from 
the beginning of each .edf file to the beginning and end of each 
seizure contained in it is also made available in the dataset. The 
EEG data can be accessed through the PhysioNet website: http://
physionet.org/physiobank/database/chbmit/  

For some files in the dataset, seizures occur in clusters, that is, 
one or more seizure events happened very close to a leading 
seizure. A leading seizure is one that is far away from the last 
seizure but followed closely by other seizures thereby ensuring 
moderate mixture of postictal (post seizure), interictal (normal) 
and preictal (presiezure) dynamics. The ictal (seizure) times have 
been clearly defined in the dataset by experts but no mention 
of the preictal and postictal times were made. Therefore, 25 
minutes of postictal data and 60 minutes of preictal data were 
considered. In order to allow for therapeutic intervention, 5 
minutes of data immediately preceding seizure was not included 
in the preictal data. The remaining data were then taken as the 
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interictal. Only patients with at least 2 seizures separated by 
at least a 2-hr period have their data extracted and used for 
this study. Approximately 187hours of EEG data containing 55 
seizures were set aside as the training dataset while the testing 
set consist of 545 hours of continuous EEG data with 43 seizure 
events. EEG data in the .edf files were converted into Matlab 
files (.mat) through BIOSIGtoolbox interface for EEGLAB in the 
Matlab/Simulink environment. Before the data were extracted 
artefact removal add-ins in EEGLAB such as CLEAN and ARS were 
used to remove artefacts from the data. Table 1 below reports 
the EEG data from the CHB-MIT dataset.

Feature extraction
Feature engineering (Low level features): The importance 
of bivariate measure profiles or features have already been 
demonstrated in several seizure prediction studies. These 
features are used to study the temporal evolution of interactions 
between different brain regions as seizure events develop 
thereby tracking changes in EEG recordings in both temporal and 
spatial dimensions. A novel bivariate measure named normalized 
logarithmic wavelet packet coefficients energy ratio (NLWPCER) 
is defined and used in this work. This feature measures the 
ratio of wavelet packet coefficients energy of relevant EEG 
spectral bands i.e., delta (δ), theta (θ), alpha (α) and beta (β) 
whose frequency ranges are 0-4 Hz, 4-8 Hz, 8-15 Hz and 15-30 
Hz respectively across the bands and between EEG channels. A 

window length of 5seconds or 1280 samples without overlap 
was used in the calculation of the NLWPCER features. For each 
window and in all channels, full wavelet packet decomposition 
was carried out, then normalized logarithmic wavelet packet 
coefficient energy was extracted for the relevant decomposition 
nodes. The normalized logarithmic wavelet packet coefficient 
energy is given by
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zx  is the NLWPCER features calculated for spectral 
band m of an epoch in channel y and spectral band n of an epoch 
with equal time index in channel z. This feature gives the cross 
energy information not just between two channels but also 
between frequency bands across channels. It is hoped that this 

Patient Case Sex Age (yrs) Number of Seizures Duration of Seizure (hh:mm:ss) Ictal Duration (min)
1 1 F 11 7 40:33:08 7.37
  1 F 13 4 32:49:49 3.32
2 2 M 11 3 35:15:59 2.87
3 3 F 14 7 38:00:06 6.7
4 4 M 22 4 156:03:08 6.3
5 5 F 7 5 39:00:10 9.3
6 6 F 1.5 10 66:44:06 2.55
7 7 F 14.5 3 67:03:08 5.42
8 8 M 3.5 5 20:00:23 15.32
9 9 F 10 4 67:52:18 4.6

10 10 M 3 7 50:01:24 7.45
11 11 F 12 3 34:47:37 13.45
12 12 F 2 40 23:41:40 24.58
13 13 F 3 12 33:00:00 8.92
14 14 F 9 8 26:00:00 2.82
15 15 M 16 20 40:00:36 33.2
16 16 F 7 10 19:00:00 1.4
17 17 F 12 3 21:00:24 4.58
18 18 F 18 6 35:38:05 5.28
19 19 F 19 3 29:55:46 3.93
20 20 F 6 8 27:36:06 4.9
21 22 F 9 3 31:00:11 3.4
22 23 F 6 7 26:33:30 7.04
23 24     16 21:17:47 8.52

  Total 198 982:56:07 193.52
*Cases 1 and 2 belong to the same patient (patient 1) taken at a 2-year interval from each other. Therefore, the total number of patients is 23. *The 
age and sex information for case 24 (patients 23) was not made available in the database.

Table 1 Information of patients in (1) CHB-MIT dataset (all 24 cases) (2) this study (red). 
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new feature will find preictal trends that can be used for seizure 
prediction. Calculating the NLWPCER measures between two EEG 
channels for P spectral bands give rise to P2 bivariate features 
therefore if P spectral bands are considered and Q channels 
are studied then all possible pair wise combinations of spectral 
bands and channels will produce ( ) ( )2

2
2

1
2

Q p Q Q
p

× −
× =  feature time 

series. With 4 spectral bands and 23 recording channels a total 
of 4048 NLWPCER feature time series were obtained. To further 
reduce the effect of noise and artefacts, each feature time series 
was smoothed with a Gaussian-weighted moving average filter 
with a window length 15. Furthermore, each feature vector was 
normalized into the interval [0-1].

Feature representation learning (High level features): 
Furthermore, good data representation for classification was 
learned by extracting high level features through feature learning 
techniques. Two newly introduced algorithms for extracting 
high level features are the sparse filtering (SF) algorithm and 
reconstruction independent component analysis (RICA). The 
appropriate feature learning technique (SF or RICA) was chosen 
on a per patient basis through Bayesian optimization procedure 
which searches among the following feature extraction function 
hyperparameters: iteration limit, solver (RICA or SF) and 
number of learned feature, q) effectively.   SF ensures good 
data representation for classification purpose by conducting a 
nonlinear map of data from low level feature space into a new 
higher or lower dimensional high-level feature space. RICA does 
the same by conducting a linear map. SF and RICA algorithms 
were implemented in Matlab through the sparsefilt/rica functions 
respectively. These functions take as input arguments matrix, X 
of low-level feature data containing p (4048) features and q, the 
number of high-level features to be extracted from X. Therefore, 
sparsefilt/rica learns a p-by-q matrix of transformation weights, 
W. For undercomplete or overcomplete feature representations, 
q can be less than or greater than the number of original predictor 
variables (features), respectively. The Matlab function transform 
completes the process by transforming X to the new set of high-
level features by using the learned transformation weights.

Following the feature learning task all derived feature time 
series were exported into excel to form feature vectors and 
consequently training and testing dataset matrices. Data were 
arranged such that each row in the matrices is an observation 
and each column represent a variable (i.e., feature), for example 
a 1-hour long raw data file generated dataset matrix of dimension 
720 by q.

Labelling each observation (Data instance) 
In the seizure prediction experiments, preictal time (time period 
immediately prior to 5 minutes before seizure onset believed 
to hold predictive markers of seizure activity) are assumed for 
each patient. In this scheme all observations in the time period 
65-5 minutes before seizure onset are labelled as preictal state 
data instances while other observations before the preictal 
times but after the postictal period are labelled as interictal state 
data instances. The ictal and postictal data were not included in 
the training set since our aim is to predict seizure events.  An 

observation or data instance is a feature vector associated with a 
specific short time interval (i.e., 5 secs in this work). By assuming 
this preictal time this work tries to investigate the possibility of 
predicting seizure events 65-5 minutes in advance.

Classifier design (SVM/ANN)
Model learning: The proposed seizure prediction model uses 
binary support vector machines (bSVM) classifier. The bSVM 
classifier was implemented in Matlab using the statistical and 
machine learning toolbox functions. A Gaussian kernel specifically 
the radial basis function (RBF) was chosen as the kernel function 
after preliminary experiments on all cases reveal mean accuracy 
results of 76.7% (s.d., 8.4%), 89% (s.d., 5.3%) and 98.5% (s.d. 
3.7%) respectively for linear, polynomial and Gaussian kernels. 
Since data in seizure prediction studies are usually unbalanced 
(i.e., more interictal data and less preictal and ictal data) and 
classification algorithms tend to produce greater accuracy for the 
class with more training samples, a down sampling of the interictal 
samples was carried out to obtain a balance between the classes 
during training. However, during testing no such down sampling 
was done. The proposed model uses Bayesian optimization 
technique in Matlab to tune the SVM hyper-parameters ‘Lamda’, 
λ and ‘Sigma’, σ independently for each patient. This is a novel 
contribution in seizure prediction studies as earlier studies 
uses Grid search optimization technique. Bayesian optimization 
maintains a Gaussian process model of the objective function 
and uses objective function evaluations to train the model. 
Parameter λ controls the regularization strength of the model 
while parameter σ controls the scale of kernel function. 

An artificial neural network (ANN) classifier was also created and 
trained using the neural pattern recognition toolbox in Matlab. 
A two-layer feed-forward network, with sigmoid hidden and 
softmax output neurons was created. The network has 10 hidden 
and 2 output neurons and was trained using scaled conjugate 
gradient backpropagation. Following the training of the predictive 
models, their performances were tested with the classification 
and prediction of seizures in the unseen testing dataset.

Post processing classifier output (Regularization): In order to 
enhance prediction performance and reduce false predictions the 
algorithm implements a post processing scheme which involves 
counting the number of samples classified as preictal. A moving 
window whose size corresponds to the assumed preictal time is 
considered. In each window a measure known as the firing power 
(fp) [32,33] is computed. This measure quantifies the amount of 
samples classified as preictal and is defined by

[ ] [ ]n

k n
o k

fp n τ

τ
= −= ∑

Where fp[n] is the firing power of the classifier’s output at 
discrete time n, τ, is the number of samples corresponding to the 
preictal time considered and o[k] is the classifier output. To make 
fp[n] a normalized function between  and  the value 1 was 
assigned to the classifier output if a sample is classified as preictal 
and the value 0 otherwise. Alarms are then raised when the fp[n] 
function exceeds a certain threshold defined as a percentage of  



2019
Vol.10 No.2:294

6 This article is available in: www.jneuro.com

ARCHIVOS DE MEDICINA
ISSN 1698-9465

 Journal of Neurology and Neuroscience
ISSN 2171-6625

which is the maximum value of the firing power function. 

Performance descriptors
The performance of the new prediction algorithm was evaluated 
using two descriptors: sensitivity (SS) which measures the 
percentage of predicted seizures and false prediction rate (FPR) 
which measures the amount of false alarm raised per unit time 
(usually 1 hour). In order to comply with seizure prediction 
characteristics phenomenon, the seizure occurring period (SOP), 
an important yardstick upon which our performance metrics are 
measured was defined. The SOP is the time period during which 
a seizure is expected to occur. 

Statistical validation
The proposed seizure prediction algorithm was validated by 
comparing its performance against that of a random predictor, 
the analytic random predictor [34]. the probability of at least 
predicting n out of seizures using  independent features by a 
random predictor is given by the Binomial distribution 

{ } ( ) ( ), , ,P 1 1
d

N jN j
j

j ñ
p d n N P P −

≥

 
= − − 

 
∑

Where parameter P of the distribution approximated by 
1 FPR SOPp e− ×= − was calculated for each patient using the FPR 

and the number of correctly predicted seizures n for that patient 
by the proposed method. At a significant level α = 0.05 the upper 
critical sensitivity of the random predictor is given as 

{ }{ }arg max , , ,P 0.05
100%n

RP

p d n N
SS

N
>

= ×

The performance of the proposed seizure prediction method 
is considered significantly better than chance if the sensitivity 
achieved by the method SSM is greater than that of a random 
predictor.

Consistency of feature representation learning
In this work, the use of feature representation learning (or high-
level feature extraction) in seizure prediction studies is introduced. 
To establish the usefulness of the method there is need to show 

Feature 
Extraction

Case

A B C D E F
Low level 
features

77 features earlier 
studied

77 features earlier 
studied

24 NLWPCE 
features 24 NLWPCE features 160 NLWPCER 

features
160 NLWPCER 

features

High level 
features Nil

Extracted via 
Sparse filtering or 
Reconstruction 

independent component 
analysis (i.e. patient 

specific)

Nil

Extracted via 
Sparse filtering or 
Reconstruction 

independent component 
analysis (i.e. patient 

specific)

Nil

Extracted via 
Sarse filtering or 
Reconstruction 

independent 
component analysis 
(i.e. patient specific)

Table 2 Six different schemes used for comparison between seizure predictions study using only engineered features and engineered features plus 
feature representation learning (FRL). 
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that the method is consistent. To do this, more examples of the 
impact of feature representation learning on engineered features 
should be studied. Six different schemes (scheme A to scheme F) 
were considered. In schemes A, C & E different sets of engineered 
features were extracted and used for seizure prediction across 
all patients. Schemes B, D & F consisted extracting engineered 
features as in schemes A, B and C respectively but with additional 
patient specific feature representation learning through sparse 
filtering or reconstruction independent component analysis 
algorithms before being used for seizure prediction. Scheme F 
is the particular method used in this work. The prediction results 
obtained from all the schemes were then compared. Table 2 
gives information about the extracted features for each scheme.

Sensitivity of seizure parameters to theoretical methodology 
used

In a review of dynamical systems modeling of epileptic seizures for 
onset prediction, Agboola et al. [35] discussed some unresolved 
issues in the seizure prediction problem. One of the issues 
bordered on predictive onset times obtained from different 
seizure prediction algorithms. The predictive times reported 
in several of the works cited in the paper were found to vary 
substantially from the order of a few seconds to several hours. 
Thus, it has been hypothesized that seizure prediction parameters 
especially the seizure onset prediction time are sensitive to the 
theoretical methodology used for seizure prediction. To observe 
this phenomenon in the proposed prediction method, the trends 
of average prediction times achieved through the SVM classifier 
for different schemes discussed in section 3.8 were observed 
across schemes (A, B, E and F) and patients

S/N Case Tst. Rec 
(hr)

No. Tst. 
Seiz.

SVM ANN

SS (%) FPR (per 
hour)

SSRP 
(%)

SOP 
(Min) p-value SS (%) FPR (per 

hour)
SSRP 
(%)

SOP 
(Min) p-value

1 1 32 2 100 0.03 50 30 0.001 50 0.02 0 20 0.02
2 2 27 2 100 0.04 0 50 0.02 100 0.14 50 20 0.01
3 3 30 2 100 0.06 0 20 0.015 100 0.01 0 30 0.035
4 4 55 3 100 0.04 25 30 0.012 50 0.18 25 40 0.013
5 5 25 3 66.7 0.11 33.3 30 0.015 33.3 0.21 66.7 30 0.025
6 6 37 4 100 0.17 50 40 0.031 50 0.14 0 40 0.041
7 7 28 1 100 0.03 0 40 0.034 100 0.12 0 30 0.014
8 9 42 2 50 0.06 50 20 0.004 50 0.1 50 20 0.012
9 10 26 3 100 0.18 66.7 30 0.042 100 0.08 66.7 30 0.034

10 12 19 4 100 0.02 0 30 0.004 100 0.15 0 40 0.001
11 13 33 2 100 0.01 50 20 0.023 50 0.21 0 30 0.002
12 14 40 2 50 0.01 0 40 0.003 50 0.02 0 20 0.011
13 15 23 4 100 0.07 0 40 0.033 100 0.12 0 30 0.003
14 18 21 2 100 0.21 0 20 0.002 100 0.22 0 30 0.019
15 20 39 2 50 0.07 0 40 0.007 100 0.19 100 20 0.027
16 22 32 2 100 0.02 0 30 0.011 50 0.18 0 40 0.014
17 24 36 3 66.7 0.19 33.3 20 0.003 100 0.14 33.3 20 0.021

Mean   32.06 2.5 87.26 0.08 21.08 31.18 0.0153 75.49 0.13 23.04 28.82 0.0178
Sum   545 43                    

SS: Sensitivity; FPR: False Prediction Rate; SSRP: Sensitivity of Random Predictor; SOP: Seizure Occurring Period; p-value: p-value of the random 
predictor.

Table 3 Seizure prediction results for 17 cases studied. 

Results and Discussion
Figure 2 is a graphical display of a typical result obtained from 
the evaluation of the proposed method used in this work with 
the testing dataset of one of the cases studied (case 4). The 
highlighted areas show 60 min preictal periods. Red vertical 
arrows indicate the alarms raised. Brown vertical lines indicate 
the seizure onsets. Horizontal dashed line marks the threshold 
on fp function for alarm generation. For this case, the threshold 
was set at 0.5. There are 3 true alarms (i.e., alarms followed by 
seizures) raised and 2 false alarms (i.e., alarms not followed by 
seizures) in the entire testing period. It should be noted that 
proper setting of the threshold for raising alarms influences 
prediction results. If it is too high the sensitivity of the model will 
be low and if it is too low the model suffers high false prediction 
rates. Trade–off is necessary in setting the threshold value.

Table 3 reports the results of the seizure prediction study in 
terms of sensitivity and false prediction rate obtained by the two 
classification algorithms:   support vector machine and artificial 
neural network for each patient. Using the ANN classifier, in 
average 75.5% of seizures in the testing set were successfully 
predicted (32 out of 43 seizures within 545 hours of continuous 
EEG data) with an average false prediction rate of 0.13h-1. The SVM 
classifier gave a better performance with an average sensitivity of 
87% and FPR of 0.08h-1. Results from model validation against an 
analytical random predictor (ARP) showed that for all patients, 
using the two classifiers the observed sensitivities exceeded the 
critical sensitivities of the ARP. The only exception is in the case 
of patient 5 using ANN classifier where the observed sensitivity is 
33.3% while the ARP gives 66.7%. The significance level, αRP used 
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for the test is 0.05. On the average the upper critical sensitivity 
of analytical random predictor was 21.1%, while that of the 
proposed method (for SVM classifier) reached 87.3%.

Figures 3a and 3b are bar charts comparing sensitivity and FPR 
results obtained for the 17 patients (cases) studied using SVM 
and ANN classifiers respectively. For both classifiers’ variability 
in the sensitivities and FPR is observed. Factors that could be 
responsible for the  variability may include (i) patient dependent 
seizure characteristics not captured by the method and (ii) 
presence of seizure dependent characteristics. 

Patient-dependent seizure characteristics: We have assumed 
a uniform preictal period (60 min) for all patients in this study 
but this might not be the case in reality as preictal period may 
vary from patient to patient. So also, we assumed a uniform 
threshold value (0.05) on the fp function for alarm generation 
which may be not produce the best result for each patient. But 
could the threshold be learned or suggested for each patient by 
our method? This is possible if the classifier output regularization 
function and alarm raising formality are configured in the 
algorithm during training. The threshold parameter would then 
be entered among other hyperparameters to search for optimal 
sensitivity and false prediction rate for each patient.

Seizure dependent characteristics: Seizure dependent 
characteristics are also believed to exist for individual patient. 

Therefore, the pattern learned by classifier trained on some 
seizures of a patient may not be useful when evaluating the 
classifier on other seizures from the same patient.

Engineered Features (Low level features) and 
Feature Representation Learning (High level 
features)
Figures 4a and 4b are box and whiskers plots comparing the 
results of seizure prediction in terms of sensitivity and false 
prediction rate respectively obtained for all patients in all 
the schemes. It is observed from the median and minimum 
values of sensitivity and FPR that schemes involving feature 
representation learning keep outperforming their respective 
counterpart schemes without feature representation learning. 
This is because feature representation learning particularly 
as obtained by sparse filtering or reconstruction independent 
component analysis is able to simplify classification rule learning 
task during training by enforcing sparsity and over completeness 
properties on the learned features. These two properties capture 
the underlying data distribution and prevent overfitting during 
the training thereby improving model generalizing ability when 
presented with previously unseen data.
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Sensitivity of seizure parameters to theoretical 
methodology used
The average seizure anticipation times of the SVM classifier is 
shown in Figure 5a for all testing set recordings using feature 
extraction schemes A, B, E and F described in Table 2. Each row 
shows the average prediction time achieved by the system with 
the feature extraction schemes for all the recordings from a 
single patient. The vertical red line indicates the seizure onset 
time. For better comprehension the trends of average prediction 
times across the schemes and patients are presented in Figures 
5b and 5c respectively. The pattern in Figure 5 looks chaotic 
for all patients as we go from left to right (i.e., scheme A to F). 
The spread of the average prediction time for all the schemes 
is quite large. For instance, the minimum, mean and maximum 
values for schemes B and E are 5, 30.8, 46 min and 9, 31.1, 47 
min respectively. This observation may be pointing to the fact 
that the seizure prediction time is strongly dependent on the 
theoretical method employed. However, the means of the 
average prediction times for the schemes are 29.7, 30.8, 31.1 
and 30.2 respectively. These values are very close. On the other 
hand, the pattern in Figure 5 is quite ordered with almost all 
schemes displaying upward and downward peaks for quite a 
number of the patients (especially patients 2, 4, 8, 10, 11, 15 
and 17). This observation is consistent with earlier observations 
about the patient dependent characteristic of seizures, that is, 
the processes leading to the generation of epileptic seizures vary 
from patient to patient.  Therefore, each scheme captures these 
different mechanisms at different but close times. 

Comparison of our method with other literature 
methods
In Table 3 the results of some of these methods are presented 
in comparison to the method proposed in this work. Although, 
it is only a general comparison due to the different epilepsy data 
(sEEG or iEEG), patients and criteria (e.g. different prediction 
horizon and SOP) used for evaluation. It is generally observed 
that performance with scalp EEG is lower. This observation may 
be explained in terms of the advantages of intracranial EEG 
(iEEG) recording. Firstly, iEEG has high signal to noise ratio and 
secondly, it is a localized recording of the brain activity which 

Year Authors Dataset (Source/type) Feature Classifier SS (%) FPR (per 
hour) SOP (min)

2016 Zhang et al. Freiburg/iEEG spectral powers SVM 100 0.03 50
2016 Zhang et al. MIT/sEEG spectral powers SVM 88.68 0.05 50

2017 Parvez et al. Freiburg/iEEG phase-match error, deviation, 
flunctuation LS - SVM 95.4 0.36 30

2017 Sharif et al. Freiburg/iEEG Fuzzy rules on Poncare plane SVM 91.8 0.05 15
2017 Arabi et al. Freiburg/iEEG univariate/bivariate features Rule-based descision 86.7 0.126 30

2017 Bonyadi et al. Freiburg/iEEG Short time Fourier Transform Convolutional Neural 
Network 89.8 0.17 30

2017 Bonyadi et al. MIT/sEEG Short time Fourier Transform Convolutional Neural 
Network 86.1 0.09 30

2018 This work MIT/sEEG NLWPCER + FRL SVM 87.26 0.09 31
2018 This work MIT/sEEG NLWPCER + FRL ANN 75.5 0.13 29

Table 4 Comparison between results obtained from earlier published seizure prediction method and the proposed method.

minimizes unwanted interferences from other brain sites on the 
signals recorded from the region of interest. On the other hand, 
Bandarabadi [36] reported a slightly higher performance of sEEG 
over iEEG and argued that although scalp EEG recording cannot 
provide localized neuronal potential activities, it can present a 
more generalized spatiotemporal view of brain’s dynamical 
system (Table 4).

Hardware implementation of the proposed 
seizure prediction algorithm
One future goal of this research is to make a hardware 
implementation of the proposed seizure prediction algorithm. 
Hardware implementation of a seizure prediction algorithm 
is essential in order to actualize a timely response or feedback 
aimed at warning patients/caregivers of an impending seizure or 
taking an action leading to its aversion. But, is the performance 
of the method proposed in this work good enough for hardware 
implementation? This question can be answered in the light 
of the performance of algorithms already in deployment 
onto seizure prediction devices. Mark et al. [37] conducted a 
multicentre clinical feasibility study to assess the safety and 
efficacy of a long-term implanted seizure advisory system 
designed to predict seizure likelihood. For the purpose, an 
algorithm for the identification of periods of high, moderate and 
low seizure likelihood was established. This algorithm which was 
later used for the hardware implementation was reported to 
achieve sensitivities ranging from 65-100%. Also, in a thorough 
review of literature and contacts made with manufacturers of 
commercially available devices, Van de Vel et al. [38] reported 
results of non-EEG based seizure detection devices as varying 
from between 2.2% and 100% sensitivity and between 0 and 
3.23 false detections per hour. Furthermore, Isabell et al. [39] 
in their bid to engineer a mobile system for seizure prediction 
used a deep learning classifier which was trained on intracranial 
electroencephalography (iEEG) data and tested on held-out data. 
The algorithm was also benchmarked against the performance 
of a random predictor. This algorithm, which was meant for 
deployment onto an ultra-low power neuromorphic chip for 
autonomous operation on a wearable device was reported to 
achieve a mean sensitivity of 69% and mean time in warning of 
27%. In summary, with an average sensitivity and false prediction 
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rate of 87% and 0.08/hr respectively the performance of the 
proposed algorithm is still very much within acceptable range in 
literature and could be deployed for use in a seizure prediction 
device. 

A few of such devices have already been manufactured and are 
presently available commercially. First of such devices is the RNS 
(response neurostimulator) system by NeuroPace@. The RNS is 
an advanced technology designed to detect abnormal electrical 
activity in the brain and respond by delivering imperceptible 
levels of electrical stimulation to normalize brain activity before 
an individual experience’s seizure. Also available in the market 
is the Activa PC + S (Primary Cell + Sensing) by Medtronic@. This 
device also monitors brain activities and sends stimulation pulses 
accordingly. Another therapeutic device which was recently 
introduced to the market by LivaNova@ is the Aspire SR (Seizure 
Response). The device constantly monitors the heart beat and 
delivers stimulation pulses when it detects a rapid heart rate 
raise. Just recently, researchers at Eindhoven University of 
Technology (TU/e) developed a smart bracelet which they call 
‘Nightwatch’. The device combines both a heart rate sensor and 
a motion sensor to look for both an unusually high heart rate 
as well as the rhythmic jolting characteristic of a seizure to alert 
caregivers only of a patient’s nighttime epileptic seizures. 

In the development of these devices’ critical issues of portability 
and power consumption are of utmost importance. The low 
power consumption property becomes even more desirable 
when the device is to be implanted in order to reduce the rate 
of routine follow up surgeries once the battery is discharged. 
Consequently, an ideal seizure prediction algorithm should not 
be computationally expensive thereby requiring low power for 
its implementation. This makes computational expensiveness 
one of the deciding factors to consider in the development of 
seizure prediction algorithms. Also, this is the reason why a new 
EEG feature was considered in the present study. 

For instance, we have reported on the computation time on 77 
existing extracted EEG features in the literature on a computer 
with an intel@ Pentium@ P6200 processor with 4 GB of RAM. It 
took approximately 20 seconds to calculate this feature for 3 
seconds of EEG data sampled at 500 Hz [40]. On the other hand, 
wavelet coefficients features are known to be easy and fast to 
compute hence their deployment in this study. The NLWPCER 
features proposed here is about 50 times faster to compute 
relative to data window length of 3 seconds.

Conclusion
Scalp and intracranial EEG possess a characteristic pattern 
that varies across individuals with epilepsy both in non-seizure 
and seizure states. However, EEG recorded from an individual 
exhibit less variability. This fact motivated the development 
of patient specific seizure prediction algorithms. In this work a 
novel patient-specific epileptic seizure prediction method has 
been developed. The method uses state of the art unsupervised 
feature learning techniques to obtain useful representation of 
existing and newly engineered feature: Normalized Logarithmic 
Wavelet Packet Coefficients Energy Ratio (NLWPCER) to predict 
seizures. The general idea is to learn a transformation that maps 
data in a low-level feature (engineered features) space into high 
level feature space where classification rule is easier to learn and 
generalizing ability of classifier is improved.

A support vector machine classifier with Gaussian kernel trained 
using the training dataset to learn preictal and interictal feature 
vector patterns performed better than the ANN classifier also 
trained for the same task. The best parameter set of the SVM was 
obtained through Bayesian optimization and the output of the 
classifier was further regularized to reduce false prediction rate 
during testing. Finally, the results obtained were compared with 
that of a random predictor for validation. With the encouraging 
results obtained in this work it is believed that the proposed 
method is a step forward toward achieving a robust and 
consistent real-time portable seizure prediction device which is 
suitable for clinical applications.

Acknowledgements
We acknowledge with gratitude the efforts of individuals at the 
Massachusetts Institute of Technology (MIT) and Children Hospital 
Boston (CHB) who made the EEG data used in this work available. 
A team of investigators from the Children Hospital Boston (CHB) 
and the Massachusetts Institute of Technology (MIT) created 
and contributed the database to PhysioNet (The PhysioNet web 
site is a public service of the PhysioNet Research Resource for 
Complex Physiologic Signals). The clinical investigators from CHB 
include Jack Connolly, REEGT; Herman Edwards, REEGT; Blaise 
Bourgeois, MD. The investigators from MIT include Ali Shoeb, 
PhD and Professor John Guttag.

Declarations of Interest
None.

References
1	 Shorvon S (2005) Handbook of Epilepsy Treatment (2nd edn). Oxford, 

Blackwell, UK.

2	 Baumgartner CW, Leutmezer F (1998) Preictal SPECT in temporal 
lobe epilepsy: Regional cerebral blood flow is increased prior to 
electroencephalography-seizure onset. J Nuclear Medicine 39: 978-982.

3	 Adelson PD, Nemoto E, Scheuer M, Painter M, Morgan J, et al. 
(1999) Non-invasive continuous monitoring of cerebral oxygenation 

preictally using near-infrared spectroscopy: A preliminary report. 
Epilepsia 40: 1484-1489.

4	 Le VQ, Martinerie J, Navaro V, Boon P, D’Have M, et al. (2001) 
Anticipation of epileptic seizures from standard EEG recordings. 
Lancet 357:  183-188.

5	 Iasemidis LD, Shiau DS, Chaovalitwongse W, Sackellares J, Pardalos 
PM, et al. (2003) Adaptive epileptic seizure prediction system. IEEE 
Trans Biomed Eng 50: 616-627.



2019
Vol.10 No.2:294

12 This article is available in: www.jneuro.com

ARCHIVOS DE MEDICINA
ISSN 1698-9465

 Journal of Neurology and Neuroscience
ISSN 2171-6625

6	 Hively L, Protopopescu V (2003) Channel-consistent forewarning of 
epileptic events from scalp EEG. IEEE Trans Biomed Eng 50: 584-593.

7	 Chisci L, Mavino A, Perferi G, Sciandrone M, Anile C, et al. (2010) Real 
time epileptic seizure prediction using AR models and support vector 
machines. IEEE Trans Biomed Eng 57: 1124-1132.

8	 Lehnertz K (2001) Seizure anticipation techniques: State of the 
art and future requirements. Engineering in Medicine and Biology 
Society, Proceedings of the 23rd Annual International Conference of 
the IEEE 2001.

9	 De Clercq W, Lemmerling P, Van Huffel S, Van Paesschen W (2003) 
Anticipation of epileptic seizures from standard EEG recordings. 
Lancet 361: 971.

10	 Feldwisch-Drentrup H, Schulze-Bonhage A, Timmer J, Schelter B 
(2011) Statistical validation of event predictors: A comparative study 
based on the field of seizure prediction. Phys Rev E Stat Nonlin Soft 
Matter Phys 83: 066704.

11	 Winterhalder M, Maiwald T, Voss HU, Aschenbrenner-Scheibe 
R, Timmer J, et al. (2003) The seizure prediction characteristic: 
A general framework to assess and compare seizure prediction 
methods. Epilepsy Behav 4: 318-325.

12	 Maiwald T, Winterhalder M, Aschenbrenner-Scheibe R, Voss HU, 
Schulze-Bonhage A, et al. (2004) Comparison of three nonlinear 
seizure prediction methods by means of the seizure prediction 
characteristic. Physica D 194: 357-368.

13	 Harrison MA, Osorio I, Frei MG, Asuri S, Lai YC (2005) Correlation 
dimension and integral do not predict epileptic seizures. Chaos 15: 
33106.

14	 Mormann F, Andrzejak RG, Elger CE, Lehnertz K (2007) Seizure 
prediction: The long and winding road. Brain 130:  314-333.

15	 Andrzejak RG, Mormann F, Kreuz T, Rieke C, Kraskov A, et al. (2003) 
Testing the null hypothesis of the nonexistence of a preseizure state. 
Phys Rev E 67: 010901.

16	 Kreuz T, Andrzejak RG, Mormann F, Kraskov A, Stögbauer H, et 
al. (2004) Measure profile surrogates: A method to validate the 
performance of epileptic seizure prediction algorithms. Physical 
Review E 69: 061915.

17	 Parvez MZ, Paul M (2017) Seizure prediction using undulated global 
and local features. IEEE Transactions on Biomedical Engineering 64: 
208-217.

18	 Wong S, Gardner AB, Krieger AM, Litt B (2007) A stochastic framework 
for evaluating seizure prediction algorithms using hidden Markov 
models. J Neurophysiol 97: 2525-2532.

19	 Snyder DE, Echauz J, Grimes DB, Litt B (2008) The statistics of a 
practical seizure warning system. J Neural Eng 5: 392-401.

20	 Sharif B, Jafari AH (2017) Prediction of epileptic seizures from EEG 
using analysis of ictal rules on Poincaré plane. Computer Methods 
and Programs in Biomedicine 145: 11-22.

21	 Haut SR, Swick C, Freeman K, Spencer S (2002) Seizure clustering 
during epilepsy monitoring. Epilepsia 43: 711-715.

22	 Zhang Z, Parhi KK (2016) Low-complexity seizure prediction from 
iEEG/sEEG using spectral power and ratios of spectral power. IEEE 
Transactions on Biomedical Circuits and Systems 10: 693-706.

23	 Aarabi A, He B (2014) Seizure prediction in hippocampal and 
neocortical epilepsy using a model-based approach. Clinical 
Neurophysiology 125: 930-940.

24	 Gotman J (1982) Automatic recognition of epileptic seizure in the 
EEG. Electroencephalography and Clinical Neurophysiology 54: 530-
540.

25	 Le VQ, Karpenko A, Ngiam J, Ng AY (2011) ICA with Reconstruction 
cost for efficient overcomplete feature learning. Advances in Neural 
Information Processing Systems 24: 1017-1025.

26	 Ngiam J, Wei P, Koh W, Chen Z, Bhaskar SA, et al. (2011) Sparse 
filtering: Advances in Neural Information Processing Systems 24: 
1125-1133. 

27	 Coifman RR, Meyer Y, Quake S, Wickerhauser V (1992)   Wavelet 
analysis and Signal processing: in Wavelets and Their Applications. 
Jones and Barlett, Boston, USA.

28	 Coates A, Lee H, Ng AY (2011) An analysis of single-layer networks 
in unsupervised feature learning: in Proceedings of the 14th  
International Conference on Artificial Intelligence and Statistics 
(AISTATS), Fort Lauderdale, FL, USA.

29	 Goodfellow IJ, Erhan D, Carrier PL, Courville A, Mirza M, et al. (2013) 
Challenges in representation learning. A report on three machine 
learning contests. The ICML 2013. Workshop on Challenges in 
Representation Learning.

30	 Romaszko L (2013) A deep learning approach with an ensemble-
based neural network classifier for black box ICML 2013 contest: In: 
Workshop on Challenges in Representation Learning, ICML.

31	 Ryman SK, Bruce ND, Freund MS (2016) Temporal responses of 
chemically diverse sensor arrays for machine olfaction using artificial 
intelligence. Sensors and Actuators B: Chemical 231: 666-674.

32	 Teixeira CA, Direito B, Feldwisch-Drentrup H, Valderrama M, Costa RP, 
et al. (2011) EPILAB: A software package for studies on the prediction 
of epileptic seizures. J Neurosci Methods 200: 257-271.

33	 Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing 
for nonlinearity in time series: The method of surrogate data. 
Nonlinear Phenomena Physica D 58: 77-94.

34	 Schelter B, Winterhalder M, Maiwald T, Brandt A, Schad A, et al. 
(2006) Testing statistical significance of multivariate time series 
analysis techniques for epileptic seizure prediction. Chaos 16: 
013108.

35	 Agboola HA, Solebo C, Aribike DS, Lesi FEA, Susu AA (2016) A review 
of the dynamical systems modeling of epileptic seizures for onset 
prediction. Proc Nigerian Acad Sci  9: 23-56.

36	 Bandarabadi M, Teixeira CA, Rasekhi J, Dourado A (2015) Epileptic 
seizure prediction using relative spectral power features. Clinical 
Neurophysiology 126: 237-248.

37	 Mark JC, Terence J, Samuel F, Michael M, Gavin F, et al. (2013) 
Prediction of seizure likelihood with a long-term, implanted seizure 
advisory system in patients with drug-resistant epilepsy: A first-in-
man study.

38	 Van de Vel A, Kris C, Bret B, Milica M, Katrien J, et al. (2016) Non-EEG 
seizure detection systems and potential SUDEP prevention: State of 
the art Review and Update. Seizure 41: 141-153.

39	 Isabell K, Subhrajit R, Ewan N, Benjamin M, Thomas C, et al. (2018) 
Epileptic seizure prediction using big data and deep learning: Toward 
a mobile system. E Bio Medicine 27: 103-111.

40	 Agboola HA, Solebo C, Aribike DS, Lesi FEA, Susu AA (2019) The use 
of unsupervised feature learning and nonlinear dimension reduction 
for enhanced interictal and preictal classification in seizure prediction 
algorithm.


