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Abstract

Multiple sclerosis (MS) is an autoimmune and
demyelinating disease, affecting the central nervous
system causing a wide spectrum of signs and symptoms.
In adult mammalian brain, neural progenitor cells (NPCs)
are placed in the subventricular zone of ventricles,
subgranular zone of the dentate gyrus and give rise to
new cells. In addition, alterations in adult neurogenesis
are implicated in psychiatric disease in humans. Currently,
there is no satisfactory evidence to describe how
neurogenesis changes during pathogenesis of MS disease.
It can be because of the lack of suitable animal model that
represents pathogenesis of different stages of MS disease.
Given that, cerebrospinal fluid (CSF) as a mirror can
reflects major part of pathological conditions of disease in
vivo administration of CSF derived from patients in to the
brain ventricles of mice can lead to an experimental
animal model for studying neurogenesis and other
pathophysiology of multiple sclerosis. This strategy will
help researchers to unravel the mechanisms in which
neurogenesis changes in different stages of MS disease.
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Background
Multiple sclerosis (MS) is an inflammatory, autoimmune

disease of the central nervous system (CNS), which is
commonly diagnosed in the prime of life. In most cases results
in chronic disability. MS mostly begins by a series of alternative

periods of remission and exacerbation, referred to as RRMS
[1,2].

While patients typically return to near normal neurologic
function at the end of each episode, over time, failure of the
CNS to regenerate MS lesions can lead to an invariable
progression of clinical disability (PMS) [3]. In addition to motor
and sensory deficits, cognitive reduction is found in up to 65%
of patients with MS [4]. Apart from impaired information
processing and working memory performance, deficiency in
spatial memory is generally reported [5]. The hippocampus is
of crucial importance to spatial memory formation, so part of
the observed memory deficit in MS [6] is likely to be caused by
damage to this tissue. It has been shown that the
inflammation-induced deficits in cognitive performance may
be related to the reduction of neurogenesis, especially when
the inflammatory reaction continues firmly for extended
periods of time [7]. In the adult mammalian brain,
neurogenesis under physiological conditions occurs in the
subventricular zone (SVZ) of lateral ventricles and in the
subgranular zone (SGZ) of dentate gyrus (DG) of hippocampus
[8]. Neural progenitor cells (NPCs) located in the SGZ of the DG
give rise to thousands of new cells every day. The majority of
these new cells migrates up into the granule cell layer (GCL)
and differentiates into granule cells. Over time, these new
granule cells are inserted into the functional hippocampal
circuitry through the formation of specific granule-cell afferent
and efferent synaptic contacts and interfere in spatial memory
establishment [9]. There is an intrinsic neurogenesis
throughout life in the human hippocampus, and only a modest
reduction in neurogenesis occurs in aging. Moreover, there is
also a preferential loss of adult-born neurons and a larger ratio
of hippocampal neurons are replaced with newborn neurons
in humans relative to the mice [10,11]. The vast majority of
hippocampal neurons are included to exchange in humans in
compare to mice. Furthermore, adult hippocampal
neurogenesis displays a much less reduction with aging in
humans relative to mice [12]. These interesting studies
emphasize that the crucial role of adult neurogenesis in
physiology of human brain relative to other rodents. Thus,
understanding the molecular mechanisms that trigger
neurogenesis modifications in human neurological disorders
have piqued the curiosity of many.
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The complete molecular mechanisms that control NPC
proliferation and differentiation under neuroinflammation are
largely unclear. Under pathological conditions of the CNS
associated with neuroinflammation, inflammatory cytokines
and chemokines can also affect the proliferative potential of
NPCs and modify neurogenesis [13]. The impact of
inflammation associated with MS in hippocampal
neurogenesis is still unknown [14]. There is now a body of
evidence that indicate an important role for CSF in brain
physiology and development. CSF contains cytokines and
growth factors secreted by the choroid plexuses and the sub-
commissural organ [15]. From the lateral ventricles CSF moves
on into the third ventricle and then the cerebral aqueduct (of
Sylvius) to the fourth ventricle the fourth ventricle. It departs
the ventricular system and enters the subarachnoid spaces
[16]. It has been shown that components carried in the CSF
not only circulate quickly through the CSF pathways but also
have quick availability to most regions of the brain [17]. CSF
acts as a signaling pathway for physiological control systems
because it has been shown to contain molecules such as
corticotrophin releasing factor, adrenocorticotropin, leptin,
interleukins and growth factors. Moreover, concentrations of
these components change with the physiological activity of the
animal, pathogenesis of neurological disorders and also during
different stages of the embryonic development [18].

It has been represented that spatial gradients of CSF
proteins play an active role to guide the distinct cell
populations, including the migration of neuroblasts from the
subventricular zone (SVZ) to the olfactory bulb in the adult
brain. Therefore, CSF distributed factors have essential effects
in many aspect of normal adult brain activity [19]. In addition,
CSF alone can promote the development and growth of neural
stem cells and cortical explants [20]. Regarding to the point
that CSF components have fast access to all of brain regions
and a large number of different CSF components are changed
during pathogenesis and different stages of disease,
neurogenesis modifications can caused by summation of all
effects of these components, such as growth factors,
inflammatory cytokines and metabolic mediators. Different
kinds of proinflammatory cytokines are upregulated in MS and
it is very interesting that different proinflammatory cytokines
may have different roles in neurogenesis. For instance, TNF
can inhibit proliferation of NPCs [21] and IFN gamma and NGF
are important in self renewal of precursor cells in neurogenic
zone [22,23].

Hypothesis presentation and testing
Given that, a vast majority of CSF components in which

change during pathogenesis of multiple sclerosis can affect
directly or indirectly on adult neurogenesis, CSF can be
considered as a mirror that reflects major parts of pathological
condition of disease. Moreover, tissue specimens from
patients with MS are not generally accessible, and post-
mortem pathology weakly displays the biological events
connected to ongoing pathogenesis. By contrast, CSF is
acquirable and can be investigated all over the course of the
disease. Considering that, no single existing animal model can
translate every aspect of MS contributes to our incomplete

understanding of pathological mechanisms that lead to
impairment of adult neurogenesis. We hypothesized that
intracerebroventricular injection of spinal fluid derived from
patients with MS patients into mice can lead to modifications
of neurogenesis in adult mice. In this experimental model of
MS, human CSF acts as a pathology initiating factor. Knowing
that, CSF components in different phases of MS disease are
changed, thus the effects of R-R MS CSF in neurogenesis of
adult mice would be different relative to Progressive MS CSF.
Moreover, we can also investigate whether patient treatment
might effect on regulation of neurogenesis. To this aim, CSF
from treatment responders (for instance, with intrathecal
methotrexate or natalizumab) can be applied instead
untreated ones. These data suggest whether the factors
involved in neurogenesis can be favorably altered with
treatment chosen. Obtained CSF should be injected to the
ventricles of mice with mini-pompe for one month. The
injection protocol of the cell cycle marker bromodeoxyuridine
(BrdU) and the immunohistochemical techniques can reveal
the number of proliferating cells in neurogenic niches. In
addition, double-label fluorescence staining for BrdU/glial
fibrillary acidic protein (GFAP), BrdU/double cortin, BrdU/
NeuN and BrdU/Cleaved Caspase 3 on the one hand can show
the level of gliogenesis, neurogenesis and cell death [24,25] of
precursor cells and on the other hand it can display the
destination of newborn neurons. Regarding that in
inflammatory disorders, such as MS, neurogenesis and
gliogenesis considered as part of self-repair process and
endogenous NPCs participate to repair the damaged CNS, they
may become the target of the disease itself [26]. By means of
viral vector, green fluorescent protein (GFP) can be selectively
deposited into newborn cells. Therefore, it is possible to track
GFP positive cells and perform electrophysiological tests on
them to observe their progress into fully mature neurons.

Recently it has been demonstrated that spatial memory
impairs in patients with MS [27,28]. Adult neurogenesis is
essential for formation of spatial memory [29]. Morris water
maze as a test of spatial memory in rodents can be used to
show the connection between neurogenesis alteration and
spatial memory impairments. Moreover, a bunch of evidence
has demonstrated that depression in common in patients with
multiple sclerosis [30-32]. Snyder JS and his colleagues have
shown that adult hippocampal neurogenesis buffers
depressive behavior [33]. Elongated immobility in the forced
swim test (FST), long latency to eat in the novelty-suppressed
feeding (NSF) test, and reduction of sucrose preference in the
sucrose preference test (SPT) are the most commonly used
rodent behavioral tests of depressive behavior [33].
Application of these behavioral tests can indicate the relation
between neurogenesis modifications and depression in
different stages of MS disease.

Implications of the hypothesis
Neurogenesis is critical for maintaining the normal

physiology of brain. Impairing or altered neurogenesis has
been associated with various neuropsychiatric disorders in
mice models [34].
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In same manner, it has been demonstrated that age-
associated cognitive decline is in line with decrement of
newborn granule cells numbers in the DG [35]. It is supposed
that remarkable alteration in the integration pattern of
newborn cells in the DG may lead to the development of
cognitive impairment observed in patients suffering from MS.

Therefore, in vivo administration of CSF acquired from R-R
and progressive MS patients can give us new insights into the
mechanisms that regulate neurogenesis in different phases of
MS disease and eventually to target neural stem cells or their
progeny to design new effective treatment strategies to
improve of cognitive deficits in patients with MS.

Moreover, using the CSF as a therapeutic vehicle to promote
CNS homeostasis has many potential benefits. Interestingly,
many proteins such as neurotrophic factors have been
demonstrated to be delivered to the CSF via intranasal
administration [36]. Thus, it seems there is a noninvasive
method with therapeutic point of view that provides the
possibility of simultaneously administering a cocktail of
neurogenic and neuroprotective factors to the CNS for
alteration of adult neurogenesis. Taking together, this
hypothesis can be considered as one of the most reliable ways
to address neurogenesis modifications in different phases of
MS.
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