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Recording the activity of cortical neurons with microelectrode 
arrays enables neuroscientists to observe simultaneously the 
activity of a large number of neurons in the brain, to investigate 
the function of the nervous system, and to retrieve real-time 
motor commands that can drive a neuro-prosthesis or a Brain-
Machine Interface [1-6]. 

Currently, an array of microelectrodes can contain as many as 
tens or even hundreds of microelectrodes, which enables a neural 
recording device to monitor much larger neuron populations. 
However, this number of recording units generates a huge volume 
of data. One of the challenges in the wireless neural recording 
systems (WNRS) is the correct and efficient transmission of these 
data out of the body from the implanted device. 

The transmission of these large volumes of data requires a high 
data rate communication link. This presents a significant technical 
challenge given that extremely low-power dissipation (e.g., ~ 
10 mW) is necessary to avoid heating the surrounding tissue 
(e.g.,<1˚C), while small-size requirement (e.g.,<1 cm2) prevents 
the use of an efficient transmitting antenna [2]. For example, for 
a 100-microelectrode array, with the resolution of 10-bits and 
the sampling frequency of 20 kHz, data will be generated at an 
enormous rate of 20 Mb/s. 

Given those limitations, several methods have been proposed to 
reduce data on the implant side prior transmitting them [1-4]. 
These methods can be mainly divided into two signal processing 
parts: signal reduction and compression. Signal reduction method 
can be further divided into spike detection and feature extraction. 
For example, principle component analysis (PCA) is a widely used 
method for feature extraction [5]. On the other hand, compressed 
sensing (CS) technique is a new signal compression method [6]. 
Comparing both signal processing techniques, signal reduction 
method keeps some important information and removes the 
rest of the information of the signal, so original signals cannot be 
acquired through this method. Signal compression method can 
recover the original signal after the compression, so this method 
can largely retain the details of the signal, but, if one wants to use 
CS technique, the signal should satisfy some criteria (for example, 
the signal should be sparse). Therefore, both methods have their 
advantages and drawbacks.

To respect the several constraints imposed on the implant side of 
the WNRS (e.g., small-size circuit and low-power consumption), 
our proposed adaptive recovery method employs an emerging 
compressed sensing (CS) theory. The asymmetric characteristic 
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of the CS allows the circuit-complexity on the implant side to be 
moved to the recovery side, which is outside of the body. 

Furthermore, in spite of the immaturity of the field, it has been 
shown that energy efficiency, circuit size, and power consumption 
of a CS encoder are on par with or better than the state-of-the-art 
of existing compression methods [7-16].

This paper deals with an adaptive recovery method. This part of a 
CS system takes place outside of the body. Here, to strike a balance 
between high compression ratio and high spike reconstruction 
quality, our proposed method is characterized by a number of 
unique features: 1) the employment of group-sparsity recovery 
algorithm, 2) taking advantage of prior information about the 
input signal, 3) the learning of prior supports of spikes, and 4) a 
matched wavelet technique.

An overview and comparison of some existing compression 
methods are given in Aghagolzadeh and Charbiwala  [1,6]. 
However, in this work, in order to further evaluate the 
performance of our proposed method, we compare it with two 
recent works in its category (i.e., techniques employing the CS 
approach). 

We recall the basics of the CS in Section II. Section III details our 
adaptive recovery method. The methodology is presented in 
Section IV. Then in Section V, our results are reported. An example 
of a small size and low power cost CS encoder is evinced in Section 
VI. Finally, we conclude with a discussion of our contribution and 
perspectives in Section VII.

Compressed Sensing
A. Background of compressed sensing 
Compressed sensing is a new approach for signal compression. 
It has been shown that if a signal has a sparse representation in 
one basis ø , then it can be recovered from a small number of 
projections onto a second basis φ  that is incoherent with the 
former [17-19]. CS is a non-adaptive data acquisition technique 
because the basis φ  does not depend on the measured signal x. 
Also, to be efficient, CS requires two conditions:

Sparse representation: The sparse property of the signal x is very 
important and directly influences performance of the CS [17-19]. 
Given  x={x(1), x(2),…, x(N)}

T ϵ RN (called a frame) and a basis ψ={
ψ 1, 2ψ ,…, Nψ } for RN x N. Consider the transform x=ψθ, where 
è  represents the N × 1 transform coefficients vector, and ψ is 
an orthonormal sparsifying basis. We can say that x is K-sparse 
(approximately K-sparse) if only K (<<N) coefficients of è  are 
nonzero (significant). 

In this case, the CS theory maintains that just a few number 
of measurements M=O(K) will both preserve all of the signal 
information and enable robust signal recovery provided that 
a suitable signal recovery algorithm is used [17-19]. CS aims to 
provide a reconstruction of x ϵ RN based on measurement y ϵ RM, 
M N<<  obtained by using a sensing matrix φ ϵ RM x N. One can 
consider the following model:

y  xφ=                        (1)

Incoherence: The sensing matrix φ  should be highly incoherent 
with the sparsifying matrix ψ, i.e., the rows of φ  do not have any 
sparse representation in the matrix ψ. The incoherence between 

the two matrices is mathematically quantified by the restricted 
isometry property or by the mutual incoherence property [17-19]. 
A popular family of sensing matrices is the set of matrices with 
random (Gaussian or Bernoulli) entries [17,18]. This family of 
sensing matrices is well known as it is universally incoherent with 
all other sparsifying bases [17,18].

Another essential component of CS is the recovery algorithm. 
Commonly used strategies to recover the frame x are often based 
on convex relaxation, nonconvex local optimization, or greedy 
search strategies [20-26]. 

Convex relaxation is used in algorithms such as basis pursuit and 
basis pursuit denoising [20], or the lasso [21]. Nonconvex local 
optimization procedures include the focal underdetermined 
system solver [22], or sparse Bayesian learning [23]. Finally, 
the most important recovery algorithms among greedy search 
strategies are matching pursuit (MP) [24] and orthogonal 
matching pursuit (OMP) [25]. MP is an algorithm that is often 
used for practical applications and there are now very efficient 
implementations of it. OMP has superior performance; however, 
its implementation is relatively more demanding both in terms 
of computation time and memory requirement. Recently, the 
CoSaMP algorithm is introduced [26]. It is based on MP, and 
incorporates ideas from the CS to accelerate the execution time 
and to guaranty better recovery. 

In this work, we are interested in greedy methods because of 
their low complexity and simple implementation, which allows 
their use in real-time applications.

B. Compressed sensing for extracellular neural 
signal
Recordings of neural signals using a single extracellular electrode 
or an array of microelectrodes are a mixture of spikes fired by 
neurons located near the electrode (i.e., single-unit and multi-
unit activities) and the background noise (Figure 1a). 
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Figure 1 Frame of 1024 samples of recordings from the 
visual cortex of a rat. (a) Spikes and noise. (b) Result 
obtained by spike detector, with spike duration J and 
times of occurrence of detected spikes (i.e., i1, i2, and 
i3).
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 The background noise is mainly composed of spikes from neurons 
far from the recording site; hence, spikes and background noise 
are relatively highly correlated [1,27]. Additionally, the signal 
to noise ratio (SNR) of extracellular neural signal is usually low. 
Consequently, this high correlation combined with low SNR 
makes the neural signal to be not enough compressible in a basis 
ø . This does not allow a significant reduction of the number of 
measurements M. 

The notion of sparsity/compressibility is critical to the emerging 
CS theory. It is one of the main measures of signal complexity and 
plays roughly the same role in CS as that played by bandwidth 
in the classical Shannon-Nyquist theory. To impose the sparsity 
requirement in the CS theory, one can be inspired by the idea of 
anti-aliasing filters. One solution consists in enhancing the SNR and 
reducing the correlation between the signal x and the background 
noise before applying CS. There exists several techniques to reach 
this purpose, such as using a whitening filter [27]. However, in 
line with the need for simplicity and energy-efficiency [28,29], we 
employ a simple spike detection technique to increase the sparsity 
of the frame x. Figure 1b shows an example of result obtained by the 
spike detection technique. The integers i1, i2, and i3 are the times of 
occurrence of the detected spikes.

As mentioned above, CS relies on the principle of sparsity to 
accomplish sensing and recovery efficiently. Moreover, it has 
been shown that if the K coefficients (i.e., x is K-sparse) of a frame 
are clustered into groups (e.g., Figure 1b), the required number 
of measurements M can be reduced [30,33]. To show this fact, 
consider the frame in Figure 1b. By assuming that the frame x is 
compressible (i.e., nearly K-sparse), we can consider two models 
to determine its N × 1 wavelet transform coefficients θ. Hence, 
Figure 2a depicts 1

ˆ ,  θ the 24 significant wavelet coefficients of θ 
of the frame shown in Figure 1b. Figure 2b depicts 2

ˆ  ,  θ the 24 
(3×8) significant coefficients of θ of the same frame. In the latter, 
each detected spike is transformed separately; for each one we 
kept just 8 significant wavelet coefficients, and we sorted each 
group in decreasing order of magnitudes (Figure 2b). We employ 
the Symlet-2 wavelet transform for the both models, which has 
been shown to be suitable for neural spikes compression [1]. 
Figure 2c depicts an example performance of the signal recovery 
of the frame x in Figure 1b. 

From this example, one can see the potential performance 
gain (i.e., M=48 rather than 80) when we exploit the fact that 
the K significant coefficients for neural signal are clustered into 
n groups of length S (where K=nS), with n being the number of 
detected spikes in the frame, and each spike is approximated by S 
significant wavelet coefficients only.

In CS theory, such model is called group-sparsity signal and it 
was demonstrated that in order to recover such signals, only a 
reduced number of measurements M is needed while preserving 
computational efficiency and robustness to measurement error 
[30-35]. 

Spike Reconstruction Using our Adaptive 
Recovery Method
To recover the ‘right’ frame x with just a few number of 

measurements M (i.e., ideally as close to K as possible), one must 
exploit prior knowledge about the frame in addition to its sparsity 
or compressibility. Thus, our proposed spike recovery method is 
adaptive in the sense that it exploits prior knowledge about the 
frame. However, to allow the use of a ‘generic’ CS encoder circuit 
(see Section VI), we keep the CS sensing part at the transmitter 
non-adaptive and not dependent on x.

In Figure 3, the dashed-line part of the block diagram depicts 
our adaptive recovery method introduced in this work. As 
shown in Figure 3, our adaptive recovery method combines: 1) 
the dynamic group-sparsity (DGS) recovery algorithm, 2) prior 
information about the frame, 3) learning of prior supports of 
spikes, and 4) a matched wavelet technique. We will explain each 
of the constituent parts of this system in the next sections.

A. The dynamic group-sparsity (DGS) algorithm
In recent years, signals with group-sparsity, whose nonzero 
coefficients occur in clusters have received much attention. The 
group-sparsity recovery algorithms (GSA) attempt to utilize these 
group clustering prior for better sparse recovery [30-35]. Some 
attempts have been made, most of which assume that a signal 
of length N (a frame) can be viewed as a concatenation of m 
clusters (groups) of length J, where N=mJ, with m an integer [30]. 
Another work assumes that the clusters are sufficiently separated 
in time. In particular, any two consecutive clusters in the frame 
are separated by at least P locations, where P>J [33]. However, in 
neural signals, the occurrence of spikes is randomly distributed 
in time and we have no guarantee that the occurrence of spikes 
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Figure 2 Example performance of neural signal recovery. 
Percentage root-mean-square difference  (PRD).  (a) 
 24 significant wavelet coefficients. (b) 3×8 significant 
wavelet coefficients. (c) Frame recovered from M 
random Bernoulli measurements using: M=48 based 
on (b), and M=80 based on (a)..
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respects any of those conditions (e.g., m is an integer or P>J). 

The DGS algorithm was recently proposed [35]. This algorithm 
deals with situations where these clustering group structures are 
dynamic and unpredictable. The DGS is a greedy sparse recovery 
algorithm, which prunes the frame estimation in the iterative 
process according to both sparsity and group clustering priors 
rather than just sparsity [35]. The DGS recovery algorithm needs 
the measurement vector y, the matrix φΘ = ψ , and the sparsity 
number K [35] to recover θ̂  (Figure 3). When compared to the 
main GSA recovery algorithms, it leads to several advantages [35]: 
1) accelerating signal recovery, 2) decreasing the minimal number 
of necessary measurements M, and 3) improving robustness to 
measurement noise and preventing the recovered frame from 
having artifacts. These advantages enable this algorithm to 
efficiently and rapidly obtain stable sparse recovery with a small 
number of measurements M. For all of the above reasons, the 
DGS algorithm is a good choice for our application.

B. Sparsifying matrix ψ
In the sensing part (Figure 3), the frame x is assumed sparse in basis 
ø  (after spike detection operation), with x=ψθ, and projected 
onto a basi  φ  s (assumed incoherent with the sparsifying basis 
ψ). In the recovery part, we used the matrix φΘ = ψ  to recover 
the original frame (Figure 3). 

      i1   i2   i3    
                
  0 0 . . 0 . . 0 . . 0 . . 0 
  0 . . . 0 . . 0 . . 0 . . 0 
  .  .     .   .   . 
  .             . 

i1  0 . . .  0 . . .     0 
  . . . .  0         
  .      .        

i2  0 . . .      . . .  0 
  .        0      
  .         .     

i3  0 0 . . .       0  0 
  .           0   
  .            .  
  0 . . .        0 . 0 

                    (2)

The GSA greedy algorithms, including the DGS, work in a very 
intuitive way. First they try to identify the groups which have 
nonzero coefficients. Once the groups are identified, the 
coefficients for each group are estimated by some simple means. 
However, if an approach uses prior information of the number 
of groups, their lengths, and their times of occurrence; this can 
lead to further accelerate frame recovery and reduce M, while 
preserving a strong recovery guarantee. This is what our results 
show in Section V.  

Hence, an idea is to take directly advantage of this prior 
information by incorporating them into the sparsifying N×N 
matrix ψ during the recovery step (Figure 3). As an example, ψ 
corresponding to the frame x (Figure 1b) has the following form 
(2), where ψs1is a J×J matrix called a block. The location of each 
block corresponds to the times of occurrence of the detected 
spikes Si in a frame x (e.g., i1, i2, and i3). Here, J is the length of the 
detected spike. From (2), the matrix ψ is a block diagonal matrix. 
The inverse of a block diagonal matrix is another block diagonal 
matrix, composed of the inverse of each block.

Also, we assume that the spike s with a length J, detected in the 
frame x, is compressible in a wavelet matrix ψs such that S=ψsθs 
The J×J wavelet matrix ψs is built based on a mother wavelet using 

the method in [36]. Note that ψs is an orthogonal matrix, hence 
θs =

1
sψ −  s= T

sψ s [36]. Since, ψ is a block diagonal matrix and the 
block ψs is orthogonal [36], hence ψ is an orthogonal matrix too 
(i.e., θ=

−1
ψ  x= T

ψ  x).

C. Learning Prior Supports of Spikes
For a spike to be compressible, θs=

T
sψ s must have only a few 

significant coefficients (Figure 4). In fact, a signal is compressible 
if the reordered entries of its ψs-coefficients decay according to 
a power-law [26]. Given an integer S, the S coefficients that best 
approximate a spike si are those that account for most its energy 
(as seen in Figure 4). In particular, we determine the smallest set 
of coefficients that retains a large fraction C of the ℓ2-norm of 
the spike si. We term this set of coefficient locations as the spike 
support ∆si determined by the following criterion [3],

ǁ θ̂ Sǁ ≥ C ǁθ Sǁ2                                    (3)

where  is θ̂ s an approximation of θs with only the S significant 
coefficients retained based on the criterion C (i.e., 0<C ≤ 1) [3]. In 
fact, setting a value for C near to 1 (i.e., 0.99) increases

both S and the quality of the recovered spike, while choosing a 
value near to 0 decreases both S and the quality of the recovered 
spike. To reach a compromise between CR ratio and quality of the 
recovered spikes, based on our simulation results, the optimal 
value of C for the datasets presented in this work is around 0.95. 

Besides, in the rest of this paper, ∆si represents the set of S 
locations of the largest coefficients sorted in the decreasing order 
of their magnitudes.

a11 a12 . . . a1S 0 . . . 0 
a21 a22 . . . a2S 0 . . . 0 
. .    . .    . 
. .    . .    . 
. .    . .    . 

aJ1 aJ2 . . . aJS 0 . . . 0 
 

                 (4)

On the other hand, our goal is to push M as close as possible to the 
sparsity number K, with K=nS (because x is group-sparsity signal), 
where n is the number of detected spikes in the frame x of length N, 
and S (with S<J) is the number of significant wavelet coefficients per 
detected spike. These K coefficients are clustered into groups (i.e., 
each detected spike si in the frame x is approximated by a group, with 
length S). We form each group by using the detected spike’s support 
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∆si to create a J×J wavelet matrix ψsi (2) as below:

where the first S columns of  ψsi are selected from  ψs based on ∆si; 
the remaining (J - S) columns are simply set to 0.

 However, the support ∆si, corresponding to each detected spike  
si in a frame, is not known in advance. Instead, we know that a 

spike si belongs to one of 
J

 
S
 
 
 

 subspaces of RJ. Note for example 

that if the length of a detected spike is J=32 and S=8, the number 
of possible subspaces for a detected spike is 10518300, which 
is an enormous number to search in real-time applications. 
Fortunately, the supports of spikes detected from the same 
neuron are very similar. The latter fact is the basis for spike 
sorting. Thus, the number of possible subspaces is much smaller 

than 
J
S
 
 
 

 if a prior learning of spike supports is performed. Based 

on this concept, we propose a simple and iterative approach using 
the mean squared error (MSE) to approximate the best support 
of each detected spike in a frame during the recovery step. One 
conclusion can be acquired from Figure 4 that S (the number of 
significant coefficients per spikes in a frame (e.g., S=8). 

Our approach is divided into two phases. During the first phase, 
one learns the support sets ∆sj (this phase occurs during the 
learning mode of our adaptive method). During the second 
phase, the support information is used to recover spikes (this 
phase occurs during the compression mode). 

The approach can be summarized as:

Phase 1: Learning the set of supports 

i. Assume D spikes (si, i=1, 2,…, D) are detected during the 
learning mode, with each spike having a length J. Each of 
the D spikes is projected into the J×J wavelet matrix ψs.

ii. Choose a fixed value of S (e.g., S=8). For each si, it needs 
to sort the J coefficients in decreasing order of magnitudes and 

select the S largest coefficients. Also, it needs store their locations 
as the support ∆si of spike si. This support will be used to create 
a J×J wavelet matrix  ψsi associated with spike si as shown in (4). 

iii. Remove the repeated identical supports. Hence, the size 
of the set of different supports becomes D’<<D.

Phase 2: During the recovery phase

For each ∆sj, j=1, 2,…, D', in the set of supports, do:

i. Build a J×J wavelet matrix  ψsj as in (4).

ii. Build ψ (2) by inserting the  ∆sj at all positions i1, i2, …, 
in (corresponding to the times of occurrence of the n detected 
spikes in frame x) (Figure 3)

Recover the vector θ̂ ϵ R 1×N based on the DGS algorithm (as 
shown in Figure 3).

iii. Extract from the vector θ̂ , the n groups corresponding 
to the n detected spikes. The length of each group ui is S. The 
groups are as follows:

1 1 1 1u  (i ),   (i 1ˆ ˆ ˆ),  ,   (i S 1),= θ θ + … θ + −

n n n nu   (i ),   (i 1),  ,  ˆ ˆ ˆ  (i S 1)= θ θ + … θ + −

n n n nu   (i ),   (i 1),  ,  ˆ ˆ ˆ  (i S 1)= θ θ + … θ + − .

For each group ui, we can sort its elements in decreasing order of 
magnitudes i(1) i(2) i(S)u  u     u≥ ≥ … ≥  and denote the result as vi= 

i(1) i(2) i(S)u ,   u ,  ,  u… .

iv. Compute the MSEji between each ui and vi.

At the end of this procedure we will build a matrix of MSEji of size 
D' × n. Each column is composed of MSE’s of the same detected 
spike si in frame x. The minimum MSE in column will correspond 
to the best basis  ψsi  of si. For each of the n detected spikes in 
frame x, we use its best basis  ψsi (allowing the minimum MSE 
in nth column) to build the sparsifying N×N matrix ψ (2) which 
is used to recover the vector θ̂  and for the final recovery of the 
frame x̂  (Figure 3).

D. Matched Wavelet
In the procedure described in the previous section, we have 
assumed that a mother wavelet (i.e., to build the J×J wavelet 
matrix  ψs) is known. In this section, we describe how to 
determine the optimal mother wavelet that is used to build the 
matrix  ψs which increases the sparsity of detected spikes. A 
topic of research interest is to find a wavelet that can provide 
the best sparse representation for the signal of interest. Several 
algorithms have been recently proposed to design a wavelet 
matched to a signal [37,38]. However, most of these methods are 
computationally intensive. In line with the need for simplicity, to 
allow a real-time application, a signal-dependent selection of the 
mother wavelet based on the criterion C (3) from [39] is adopted 
in this work. The mother wavelet can be parameterized through a 
scaling filter h of length F [39]. In particular, if F=4, just one single 
parameter α is needed for the design of h (5) [39]. This allows 
faster computation than optimization of multiple parameters. 
The coefficients of the scaling filter h are as in (5) [39].

To choose the optimal parameter α: 1) we record D detected 
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spikes si, i=1, 2,…, D; 2) we vary α between - π and π with a step 
of πƒ 10 to design the filter h; and 3) for each h,  based on the 
criterion C (3), we determine the number of the S coefficients 
that best approximate each spike si within the D recorded spikes.

[ ] ( ) ( )( ) ( )
[ ] ( ) ( )( ) ( )
[ ] ( ) ( )( ) ( )
[ ] ( ) ( )( ) ( )

0 1 cos sin / 2 2

1 1 cos sin / 2 2

2 1 cos sin / 2 2

3 1 cos sin / 2 2

h

h

h

h

= − α + α

= + α + α

= + α − α

= − α − α

                    (5) 

The value of α resulting in the lowest statistical moments (first 
criteria, the mean μ; and second criteria, the standard deviation 
σ) is considered as the optimal one (Figure 4). This is because if 
we minimize those two moments, the sparsity is maximized. Note 
that, the decomposition level is set to 4 (because, typical action 
potentials have frequency range between 1 kHz to 5 kHz) [40]. 

Once α is selected, we apply the learning of prior supports of 
spikes procedure described in the previous section on the same 
D recorded spikes.

Materials and Methods
All the algorithms and data analysis procedures were implemented 
in MATLAB (Mathworks, Natick, MA). In order to evaluate our 
proposed method, simulations using synthetic neural signals 
constructed from real neural recordings were conducted. Four 
different sets of extracellular recordings from four distinct sources 
were used for this purpose. 

The first data set is recorded from an adult male monkey 
(Macaca Mulatta) at Cognitive Neurophysiology Laboratory 
of McGill University. The data contain thirty-two extracellular 
channels recorded using the Utah 10x10 microelectrode array 
implemented in the prefrontal cortex. The data consist of three 
different recordings over three trials. The duration of each trial 
was 300 seconds. Data were first filtered using a 3rd-order band-
pass Butterworth analog filter with cut-off frequencies of 0.3 Hz 
and 7 kHz. The filtered data were then amplified with a gain of 80 
db, sampled at 30 kHz, digitized (10 bits per sample), and finally 
stored on a computer. 

The second set of data is recorded from the visual cortex of a rat 
at the Center for Studies in Behavioral Neurobiology of Concordia 
University using a stainless-steel-tipped microelectrode with a 
shank diameter of 75 μm. The data were filtered using a 4th-order 
band-pass Butterworth analog filter with cut-off frequencies of 
0.15 and 10 kHz. The filtered data were then amplified with a 
gain of 100 db, sampled at 32 kHz, digitized (10 bits), and finally 
stored. The recording has a duration of 60 seconds. 

The third set is offered by [41]. It consists of a simulated 
extracellular signal from recording in a human medial temporal 
lobe using intracranial electrode. The signal is 10 seconds long, 
and it was amplified, sampled at 32 kHz and filtered between 0.3 
and 3 kHz, digitized (12 bits), and stored. 

Finally, the fourth set of data is extracted from recordings in a 
macaque parietal cortex. The data contain four extracellular 
channels which were recorded using a single Tetrode. The 

data are 38 seconds in duration. They were amplified, band-
pass filtered (0.3 and 10 kHz), sampled at 20 kHz, digitized (12 
bits), and stored. The extracellular recording presented here is 
retrieved from [42].

To obtain similar recording conditions, all the data were first re-
filtered with a second-order non-causal Butterworth band-pass 
digital filter with cut-off frequencies of 0.3 and 7 kHz (the non-
causal filter relatively preserves the shape of waveforms spikes), 
re-quantized with 10 bits per sample, and finally, re-sampled at 
20 kHz. Since, the neural spike length is assumed ~ 1.6 ms [40], 
then we allocate 32 samples per spike. 

In an attempt to evaluate our proposed method, first we 
extracted free noise segments from the available data to 
construct background noise libraries. To build large data sets 
of the background noise, neural noise were modeled by an 
autoregressive (AR) model [43]. The order of the AR model 
was determined using Akaike criteria [43], and the AR model 
coefficients were determined by solving the Yule-Walker 
equations [43]. We used the fifth-order AR model for the first and 
third data sets, and the eighth-order model for the second and 
fourth ones. Second, for each set of data, spikes were detected 
by setting a threshold manually (above the perceived noise level), 
isolated (32 samples per spike), aligned, and stored to build spike 
libraries. 

To construct the synthetic neural signals, the extracted spikes from 
each set of data were randomly inserted into the corresponding 
noise libraries. Spike timings were generated between 10 and 
200 spikes per second (which correspond to n=0 to 10 spikes per 
a frame x of length N=1024 as depicted in Figure 5). The SNR of 
the synthetic neural signals, defined in (6) [1], was fixed randomly 
between 3 and 6. 

Noise

Average spike peak to peak amplitudeSN  
RMS

=                 (6)

Finally, the spike detection stage in Figure 3 is performed by the 
absolute value (Abs) technique [28]. We selected this method for 
its relatively good performance and simplicity [29].  

1 2 3 4 5 6 7 8 9 10
n spikes detected per a frame x of length N = 1024
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Figure 5 Histogram of the number of the detected spikes per a 
frame x of length N=1024 of over 400,000 spikes from 
the four sets of neural recordings.
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Simulation results
In order to evaluate our proposed method depicted in Figure 3, 
several sets of simulations have been performed. Simulations 
were separately run for all data sets presented in Section IV. For 
each one, we calculated the average of the results of a Monte 
Carlo simulation over 500 trials. Each trial was conducted by 
extracting from a synthetic neural signal, presented in Section 
IV, a frame x of length N=1024, performing spike detection (Abs 
technique), computing M linear random Bernoulli measurements 
(where each entry of the matrix φ  is x̂, ), recovering the frame x̂,
and recording the magnitude of the recovery error for different 
values of the ratio M/K (from 0.5 to 8 with a step of 0.5). Also, 
we define Bx and By as the bits needed to represent the dynamic 
range of each sample in x and y respectively (1). We set Bx=10 
and By=16, the choice of By=16 is based on our simulation results. 
Thus, the effective compression ratio (CR) is (N. Bx)/(M. By).

In this work, the recovery error is estimated by the percentage 
root-mean-square difference (PRD) and the PRD is shown in (7),

2 2
2 2

ˆPRD 100%x x x= − ×                                (7)

where x  is the original signal and x̂ is the reconstructed signal.

Note that the sparsity number K=nS, where n is the number of 
detected spikes in a frame, and S is the length of a group (i.e.,  
the number of the S significant coefficients per spike sorted in 
decreasing order of magnitudes uses our iterative method based 
on the MSE). In the rest of this paper, frame is referred to the 
frame x of length N=1024 after the spike detection operation. 
Figures 6-8 display the average of all data sets.

To increase the sparsity of spikes in the basis ψs (4), and to achieve 
recovery of these spikes with a high accuracy, we used the 
matched wavelet method and the learning of prior supports of 
spikes as explained in Section III. Our proposed method operates 
in two modes. The first mode is called the learning mode, in 
which we allocate S=32 coefficients per detected spike in a frame 
x (Figure 6). This mode is used to build the set of supports and 
to select the parameter α with C=0.95 and D=1000. The second 
mode, called the compression mode, uses the iterative method 
based on the MSE explained in Section III-C. Figure 6 shows the 

recovery errors when the group lengths are S=6, 8, and 32.

Figure 6 shows that if a frame is sensed with M=2K measurements, 
the recovery of spikes can be done without any distortion during 
the learning mode. Also, the distortion observed during the 
compression mode is relatively small, i.e., the PRD is ~ 10% and 
15% when S=8 and 6, respectively.

Based on Figure 7, it can be seen that when M=2K, our proposed 
method achieves a better recovery performance than the 
methods proposed in [3,32]. The opposite is true when M ≥ 3K. 
Remember that ideally one should get M=K.

To further evaluate our proposed method, its performance  in 
terms of spike sorting accuracy was estimated and compared 
against the two methods in [3,32] for different values of the ratio 
M/K (from 0.5 to 8 with a step of 0.5). 

Towards this purpose, we applied the spike sorting method 
proposed in [44] to the recovered spikes resulting from the three 
methods. The method in [44] combines DWT-processing with 
super-paramagnetic clustering. The spike sorting accuracy of the 
three methods was computed by comparing the classification 
of spikes resulting from each of the methods against the ‘right’ 
classification (i.e., spike sorting of the original spike).  Figure 8 
depicts the average results of a Monte Carlo simulation over 500 
trials of 100,000 spikes from the four different sets of extracellular 
recordings.

Figure 8 shows that when M=2K, the spike sorting accuracy of 
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our method is better than the accuracy of the methods in [3,32]. 
The performance of the three methods are practically the same 
when M ≥ 3K.

Example of CS encoder
An idea of the architecture of a CS encoder using a matrix 
generator ɸ with coefficients cij is depicted in Figure 9. Generation 
of the matrix ɸ requires a pseudo-random bit sequence (PRBS) 
generator [8]. This architecture allows the sensing of data stream 
without using any storage for the incoming data or for the matrix 
coefficients [8]. 

At this stage, one important question to be addressed is: How 
can one determine the minimum number (M) of branches in this 
encoder (Figure 9) leading to a minimum size circuit and better 
energy-efficiency? 

Let Mop denote the minimum M. Based on Figures 6-8, we can 
observe that when M/K=2, our proposed method offers a good 
trade-off between recovery performance (quantified in this work 
by both PRD and spike sorting accuracy (Figures 7 and 8)) and 
compression ratio CR. Recall that K=nS, where n is the number of 
detected spikes in a frame. Hence, Mop can be estimated as (8): 

op op opM 2n S=                       (8)

where nop and Sop are the minimum of n and S respectively.

The choice of nop is more delicate; it depends mostly on the 

y1
c1j

y2
c2j

xj / j=1,…, N

yM
cMj

Figure 9 Block diagram of the compressed sensing encoder 
architecture [8].
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Figure 10 PRD error and CR as a function of n when M=128 and 
64.

system under investigation and the user's choice. From Figure 
5, it can be seen that for the data sets presented in this work, 
the probability of occurrence of n>8 spikes per frame is close to 
zero. Moreover, from Figures 6 and 8, it is seen that when S= 
8, the observed distortion and the spike sorting error during the 
compression mode are relatively small. Therefore, s=8 can be a 
good choice.

However, the choice of nop=4 favors small size circuit, better 
energy-efficiency, and less power consumption (Table 1). So, the 
number of branches M in the sensing circuit when nop=8 (4) can 
be set at 128 (64). Table 1 depicts a comparison between the 
power cost and size of the CS-encoder in both situations, i.e., nop 
=4 and nop=8. 

Note that if one chooses Mop=128 (64), this does not mean that 
the encoder will not process situations when more than nop=8 (4) 
spikes were detected in a frame x. It only means that PRD would 
degrade (Figure 10). Contrariwise, when n<nop, a higher signal 
compression ratio can be achieved. For example, if n=3 and S=8, 
only M=2 × 3 × 8=48 measurements will suffice in order to obtain 
CR=(1024x10)/((48x16)+3)~ 14 and  PRD ~ 10 %. 

From Figure 10, one can see that the variability of FR of spikes 
was taken into account to optimize the recovered spikes quality, 
while keeping CR to an acceptable level even if FR increases, e.g., 
CR ~ 5 (CR ~ 10) when n>8 (> 4). 

Finally, neural signals has nonstationary properties [45]. 
Therefore, the set of supports and the parameter α need to be 
refreshed. One method to refresh them is to trigger the learning 
mode periodically, and the frequency of this operation depends 
mostly on the system under investigation and user choice.

Discussion and Conclusion
Results presented in this paper illustrate that our proposed 
method allows achievement of a compromise between high 
compression ratio and good recovery quality, while keeping CR at 
an acceptable level even when FR increases (Figure 10). 

Also, our results demonstrate that the proposed method is 
more efficient, in regard to the trade-off between CR and 
spikes recovery quality, than recent CS-based methods [3,32]. 
We gained this advantage by using the DGS recovery algorithm 
combined with the matched wavelet technique and learning of 
prior support of spikes. Certainly, one can use other non-GSA 
recovery algorithms such as CoSamp or OMP. However, to get 
better results, we suggest using DGS, as described in this paper. 
In fact, we replaced DSG with CoSamp and OMP (results not show 
here) and found out that CoSamp performs better than OMP but 
not as well as DGS.

Note that, there are special situations that our method needs to 
deal with:

ABS-detector [29] CS-encoder [8] CS-block

Size
(mm2)

Power
(μW)

Size
(mm2)

Power
(μW)

Size
(mm2)

Power
(μW)

M=
128 0.0003 0.01 0.0036 ~ 4 0.0039 ~ 4

M=
64 0.0003 0.01 0.0036 ~ 2 0.0012 ~ 2

Table 1 Power cost and size circuit for the CS-block (Figure 3).
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i. A spike can be detected on the boundary of two consecutive 
frames, F1 and F2 (e.g., out of the 32 samples constituting a spike, 
the first 10 samples might be in F1 and the last 22 in F2). Our 
solution consists in handling such a spike without compression 
(by allocating S=32). Therefore, instead of inserting a J×J wavelet 
matrix  ψsi in  ψ (2), we insert an identity matrix of size ((N − i) + 
1) × ((N − i) + 1) to recover F1, where i is the time of occurrence 
of the spike. Also, to recover F2, we insert an identity matrix of 
size (31− (N − i)) × (31− (N − i)) at the starting point of  ψ. This 
adjustment is trigged only when i of the spike in F1 is ≥ 994.

ii. There are many neurons around electrodes, and they can fire 
simultaneously or one after another within a very short time. In 
these cases, spike waveforms from a few neurons overlap each 
other and the resulting spikes have distorted shapes. Hence, no 
prior knowledge of support for such spike can be learned. One 
solution consists in handling such a spike without compression 
(by allocating S=32 and inserting an identity matrix of size J×J in 
ψ). However, an appropriate detection of such spike needs to be 
integrated into the spike detection stage. This issue is currently 
under investigation. For now, the recovery of such spike can be 
done but with a relatively large PRD (because it is handled as a 
normal one).

Moreover, there is another issue regarding the spike detection 
technique (which is used to increase sparsity of the signal) before 
applying CS. In spike detection, we wish to decide between two 
hypotheses, the null hypothesis (i.e., only the noise is present) 
versus the alternative hypothesis (i.e., a spike and noise are both 
present). One needs to continuously compare the input signal to 

a threshold to decide which hypothesis is true. The value of this 
threshold is generally based on estimation of statistical moments 
of the background noise [45]. To achieve an optimal trade-off 
between spike detection efficiency, circuit size, and low-power 
consumption, one can calculate the threshold on the receiver side 
(outside of the body) and then transmit it back to the implanted 
device. To perform this calculation, the neural signal needs to be 
transmitted without any processing. Therefore, the system must 
bypass the spike detector and the CS encoder altogether (Figure 
3).

Finally, there is a great advantage in using CS-based methods 
in data reduction in wireless neural recording systems. Indeed, 
there is a decoupling between compression (encoder) and 
decompression (recovery) parts in CS-based methods. The CS 
encoder can be a ‘generic’ circuit while the decoder part can be 
adaptive, as in the recovery method presented in this paper. As 
a result, the signal recovery algorithm in the CS-based methods 
can be changed while keeping the same CS encoder. This is a 
powerful property which allows CS to accommodate evolution 
of technology and algorithms. For example, if our proposed 
adaptive recovery is improved or a new method is discovered in 
future, we can still ameliorate the data reduction capacity of the 
system without making change to the ‘generic implanted device, 
obviating the need to perform a new surgical operation.
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