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Abstract

Epilepsies, especially mesiotemporal epilepsy in
adulthood, are frequently associated with chronic
cognitive loss, psychiatry symptoms and conditions. We
aim to present the pathophysiology of interictal
psychiatric comorbidities interlocked with cognitive loss;
severely compromising the quality of life of epilepsy
patients. We will present the mechanism of cognitive
harm related to interictal spiking; and the abnormalities
of brain networks in epilepsy, especially of the default
mode network, briefly looking into psychosocial and
pharmacology effects, too.

In addition to seizures, interictal epileptic activity, mainly
in sleep, may exert chronic cognitive harm, increasing the
risk for primarily non-cognitive psychotic conditions as
well. Interictal spikes and pathological high frequency
oscillations curiously resemble normal memory traces;
enabling them to “behave” and be mistaken for engrams
by the memory process. Epileptic activity impairs the
white and grey matter of the brain; likely contributing to
brain network changes. The epileptic network changes
resemble those seen in non-epileptic psychiatry
conditions, offering a network-interpretation of
psychiatric comorbidity.

Keywords: Epilepsy; Cognitive loss; Memory; Default
mode network; Psychosis; Depression

Introduction
The flagship symptom of epilepsies is the epileptic seizure,

but cognitive and behavioural changes, psychiatry symptoms
and conditions intimately associate with it. We aim to present
the putative mechanism of interictal epileptic psychiatric
comorbidities, with special attention to cognitive changes.
Because the temporo-limbic system has paramount
importance in the regulation of emotional and mood-related
functions as well as in the processes of memory and learning –

cognition -, mesiotemporal lobe epilepsy out of the adulthood
epilepsies, carries the highest risk for developing mental
symptoms. Through its rich connections, the temporo-limbic
system participates in the shaping of psychopathology
symptoms of extra-temporal epilepsies as well; making
mesiotemporal lobe epilepsy a proper model for studying the
cognitive and mental comorbidities of epilepsies in general.
Therefore, in our work we pay most attention to
mesiotemporal lobe epilepsy.

Classification of mental comorbidities in
epilepsy

The mental disturbances that are the complications of
epilepsy belong to the group of ‘Organic, including
symptomatic, mental disorders’ (ICD-10; F00-F09) [1]. In the
classification system of the Diagnostic and Statistical Manual
of Mental Disorders (DSM-5) [2], epilepsy-related disturbances
fit into several additional groups: Group 20. ’Other clinically
significant disturbances’ or group 17, ’Neurocognitive
disturbances’. Childhood developmental epileptic
encephalopathies may be consistent with DSM-5 1.
‘Neurodevelopmental disorders’. The depressive, psychotic,
anxiety and compulsive disturbances belong to DSM5 2-6: 2.
Schizophrenia spectrum and Other Psychotic Disorders; 3.
Depressive Disorders; 4. Bipolar and Related Disorders; 5.
Anxiety Disorders; 6. Obsessive-Compulsive and Related
Disorders.

However, the epileptic variants of psychiatry conditions are
usually different compared to the non-epileptic forms: they
are shorter, non-familial and leave no mental deficits,
contrasting schizophrenia. They may brittle from one type to
another in one patient, carrying mixed features. Recognizing
the atypical, epilepsy-specific presentation of some mental
disorders, the International League against Epilepsy has built a
classification system [3], discriminating typical versus atypical
epileptic forms.

Based on the adoption of the existence of atypical forms by
ILAE, we venture not to use detailed psychiatry nosology
categories in our work; rather, we refer to groups based on
leading symptoms such as depressions-mood disorders,
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anxiety syndromes, psychoses and schizophreniform psychoses
in general.

The background of interictal psychopathology
disturbances in epilepsy

While the cognitive damage of seizures and the instant
harm of interictal discharges, called transient cognitive
impairment, are relatively easy to interpret, the mechanism of
enduring psychiatry symptoms and conditions far away from
clinical seizures is less clear [4-8]. The following data
demonstrate the proportions of such comorbidities.

More than half of the epilepsy population suffer from low
moods and each epilepsy patient develops at least one
episode of clinically significant depression, contrasting with
just 16% of patients with diabetes, 17% with asthma and 9% of
the general population [9-11]. Forty percent of epilepsy
patients suffer with anxiety conditions [12]. The risk of suicide
is elevated several- fold compared to the general population;
twenty-fivefold in temporal lobe epilepsy [11,13-16]. The
prevalence of psychosis is sevenfold of the general population,
and the schizophreniform psychoses affect more than half of
TLE patients [17-20]. During ten years of follow-up, 10% of
children suffering in temporal lobe epilepsy have developed an
episode of schizophrenic psychosis [21].

There are several concepts on the causes of chronic
psychiatry comorbidity in epilepsy.

1. The unforeseen seizures maintaining uncertainty and
defencelessness together with the complex psychosocial
handicap related to epilepsy may have a psychopathology
impact

2. Are the antiepileptic drugs responsible? Sometimes, but
likely not essentially: we see the mental harm before
introducing antiepileptic treatment and in spite of drug
changes as well.

3. The interictal epileptiform activity causes chronic
cognitive harm [22].

4. It has long been suspected that the abnormal sensoro-
limbic connections in mesiotemporal lobe epilepsy might
cause pathologic hypersensitivity to external stimuli.
Connectivity studies, especially those on resting state
networks have confirmed such possibilities.

Ad 1. The unexpected seizures causing
uncertainty and defenselessness may have a
psychopathology impact

Epilepsy is a source of traumatic experiences, restrictions,
defenselessness and stigmata. Most patients have social
difficulties; are lonely and single. A seizure occurring in a
community may be disgraceful, leading to embarrassment and
repudiation, causing the isolation of the patient.
Stigmatization may cause abnormal development of the self,
and security restrictions increase shyness.

The repeated seizure-related loss of control is another
specific traumatizing factor: experiencing doom may foster
suicidal propensity and maladaptive strategies. Female gender,
family stressors or the lack of family support are additional
psychological risk factors.

Ad 2. The cognitive and psychopathology
effects of antiepileptic drugs (AEDs)

Old AEDs as barbiturates and phenytoin typically cause
psychopathology. Phenytoin and phenobarbitone are
independent risk factors of suicide [23]. Vigabatrine, an
irreversible gamma amino butyric acid (GABA)-transaminase
inhibitor causes depression in 10% of patients [24], similarly to
tiagabine; inhibiting GABA-uptake. Topiramate may aggravate
depression [24]. Based upon one study; oxcarbazepine is an
independent risk factor of depression; while other studies
found its mood-improving effect [15,25,26]. Levetiracetam
may cause irritability and fatigue, aggressive behaviour [27-29]
and even psychosis [23,30]; 16% of patients treated with
levetiracetam suffer psychiatry complications [31]. At the
same time, due to its excellent antiepileptic properties, it is a
good option in treating peri-ictal psychoses. Carbamazepine,
lamotrigine and sodium valproate have an anti-depressive and
mood stabilizing effect [24]. Lamotigine and gabapentine
cause less mental adverse effects than the rest of AEDs [31].
Carbamazepine has a protective effect against psychosis [23].

The cognitive harm of AEDs correlates with the number
administered in poly-therapy: the increase of AED-numbers
given in combination correlates with an impairment of
executive functions: “each additional drug matters” [32]. The
excellent cognitive effects of lamotrigine and the less favorable
ones of topiramate are well known. The cognitive spectrum of
lacosamide is similar to LAM [33]. Levetiracetam improves the
performance in visual memory and attention tests [27]. Only
topiramate has caused any language-related functional
network deactivation and dysphasia [34].

In summary, when dealing with mental changes in
epilepsies, one needs to consider the potential impact of
antiepileptic drugs, especially, if given in combination. Older
antiepileptic drugs and topiramate may have cognitive harm,
levetiracetam frequently compromises mood and might cause
agitation, and lamotrigine is a mood-stabilizer sometimes also
causing agitation. The drug interactions of AEDs (exceeding the
frameworks if this review), especially with psychotropic drugs
need special consideration when both types of drugs need to
be administered together.

Ad 3. The chronic cognitive harm of interictal
epileptiform activity: the memory impairment
caused by spikes

Cognition has strong impact on apparently independent
psychopathology conditions, even acting as their risk factors
[35-37]. The memory process - encoding, consolidation and
retrieval - may be compromised in several types of epilepsies;
mildly and not perceived in some, or at a tragic and dramatic
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speed and extent in other ones e.g. in early childhood
developmental encephalopathies.

The physiology of learning - encoding and consolidation of
memory - associates to the hippocampi, the thalamo-cortical
system and to nREM sleep [38-46].

Memory encoding
Based on animal experiments, the site of the activated CA1

and CA3 pyramidal cells is the presently known clue for the
transcription from external stimulus to nervous signal, called
encoding [47].

Synaptic plasticity
Learning depends on synaptic enhancement and weakening.

Cellular learning, consistent with long-term potentiation is
under the control of N-methyl-D-aspartate (NMDA)-receptors
and other neurotransmitters. long-term potentiation [48] is a
persistent strengthening of synapses based on recent patterns
of activity, marked by the decrease of synaptic stimulus-
threshold, the increase of the intensity and frequency of
discharges, postsynaptic depolarization and the rate of calcium
influx [42,43,49-52]. It develops due to repeated high
frequency (tetanic) stimulation of a synapse, so that the
involved neurons learn to convey a given stimulus.

Memory replay
One of the basic elements of memory consolidation [the

stabilization of an engram] is the replay of daytime impulses.
The incoming impulse activates the specific cortex, which in
turn stimulates the granular cells of the hippocampus causing
delayed activation of the hippocampal pyramidal cells during
sleep and other off-line states of the brain [53]. The discharges
of hippocampal pyramidal cells repeat the sequence of
daytime impulses in an accelerated and condensed form; this
is called replay [42,43,54-57]. The replay reinforces the
unstable engrams and projects them to the frontal cortex,
where they join stored memories and consolidate. e.g., the
place-cells activate in a certain order at the time of the spatial
orientationthen the sequence of these discharges reoccurs in
the hippocampal pyramidal cells with a10-20-fold speed during
the next sleeping period; consolidating ultimately in the cortex
[53,54]. Thus, memory consolidation occurs in a cortico-
hippocampo-cortical loop, broken if the hippocampus is
damaged [43,55,56,58-60].

Sharp wave-ripple complexes
The key electrophysiology actor of memory-replay is the

hippocampal sharp-wave ripple complex. It is made of a sharp
wave arising from the excitatory system of the CA3 region
[42,43,53-61] and an 80-200 Hz network ripple in the CA1
region [42]. The sharp-wave ripple complex emerges during
off-line states: nREM sleep, resting and consummator periods
[59-62]. Those studies where the abolishment of sharp-wave
ripple complex hindered rats` space learning; have proven its
essential role in memory consolidation [60,63].

The sharp-wave ripple complex and the
interictal epileptic activity

Animal and human studies show that temporal epileptic
spikes link with hippocampal ripples, suggesting that the sharp
wave component of the complex suffers an epileptic
derailment to an epileptic spike. This transcript (sham) of the
sharp wave is unfit for memory consolidation [43,57-59,64,65].
In addition, the ripples of the complex may undergo an
epileptic conversion as well, developing into pathological high
frequency oscillations [43,66]. Thus, the epileptic spikes and
pathological high frequency oscillations occupy the normal
plastic process, making the system unserviceable [64,67]. Due
to the sleep dependency of SPW-Rs, this conversion links to
nREM sleep and favours after-learning periods.

Sharp-wave ripple complex and schizophrenias
In a schizophrenic, calcineurin-deficient mouse model

(calcineurin is a forebrain specific phosphatase enzyme
involved in synaptic plasticity) the hippocampal replay is
abnormal: there are many sharp-wave ripple complexes, but
their sequential pattern repeating daytime stimuli is absent.
This links schizophrenia to cellular level synaptic dysfunction
and cognitive harm [68,69].

The triad of slow waves, spindles and ripples in
sleep

Within nREM sleep, sharp-wave ripple complexes link to
neocortical slow (<1 Hz) waves, more so with the higher
amplitude ones, emerging in the transition-zones of slow
waves when the waves are turning from their up to their down
states [61,70]. There is a coupling between sharp-wave ripple
complexes and sleep spindles as well. In nREM sleep, those
three patterns interlock under the direction of slow waves. The
ripples of sharp-wave ripple complexes, carrying the
reactivated engrams, fit into the sleep spindles feeding the
hippocampal information into the neocortical networks,
resulting in persistent synaptic enhancement called learning
[61,71,72].

The homeostatic control of sleep slow waves
Sleep slow waves are under homeostatic control. Their

number increases in the site of, and proportionally to the pre-
sleep exertion of the brain; then it decreases again after
fulfilling the task [73-75]: recovering the exhausted synapses
facilitated by pre-sleep daytime exertion. The name of this
recovery process with slow wave decay overnight is synaptic
downscaling; refreshing the saturated synapses and making
them workable again. After a hard requisition, our sleep is
“deeper”, containing more slow waves [41]. Slow waves are
abundant in periods of high sleep-pressure (the first sleep
cycle of the night, deep slow wave sleep and cyclic alternating
pattern (CAP) A1), then they attenuate overnight [72,74-76].
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Slow waves and spikes
The slow wave-tie of sharp-wave ripple complexes and their

propensity to an epileptic derailment involve, that spikes and
pathological high frequency oscillations couple with sleep slow
waves [56,67,77-79]. Therefore, the highest spike-density is
due in the periods of high homeostatic pressure during sleep,
correlating with pre-sleep cortical requisition [77-80].

The spikes “mimic” engrams
The epileptic derailment of sharp-wave ripple complexes

results in “senseless” spikes and pathological high frequency
oscillations: Due to the spikes` similarity to the sharp waves of
sharp-wave ripple complexes, the residual normal plasticity
“mistakes” daytime spikes for memory traces. The condensed
sequence of pre-sleep interictal spike-discharges could be
detected during the subsequent sleep period over wide
cortical regions meaning that spikes are replayed and
processed, as normal engrams are [66,81]. Thus, spikes
“behave” as normal engrams, enhancing the homeostatic
pressure: in animals, seizures and spikes cause synaptic
facilitation; and in human epilepsy patients, the sleep delta
power correlates with the pre-sleep spike-number [64,82]. The
spikes are dysfunctional in another way, as well, inhibiting the
physiological homeostatic restitution. A high daytime spike-
number was followed by less slow-wave decay than normal
learning during the subsequent sleep period [66]. In
encephalopathy with electrical status epilepticus in sleep
encephalopathy with status epilepticus in sleep (ESES), the
continuous interictal discharges in sleep inhibited night-time
slow wave decay, reducing next day’s learning capacity [73,82].

Summary: The multiple ways of memory-
impairment caused by interictal spikes
• During sleep, spikes and pathological high-frequency

oscillations, as dysfunctional shams of sharp-wave ripple
complexes are unfit to replay and consolidate normal
memory (Figure 1).

Figure 1 The multiple harm of epilepsy on the memory
process, the 24 hours cycle and the homeostatic drive (HD).
[SW: Slow Waves <1 Hz in nREM sleep, HD: Homeostatic
Drive; MC: Memory Consolidation; Sy: Synaptic up-, and
down scaling; SPW-R: Sharp wave-Ripple; pHFO: Pathologic
High Frequency Oscillations; _._._>: Derailment or
Malfunctioning; Day and night].

• Daytime spikes behave as engrams: annexing synaptic
capacity, they obstruct the elaboration of normal engrams.

• While daytime spikes cause homeostatic slow wave
increase in sleep, they block slow wave decay overnight
thus decreasing synaptic receptivity the day after.

• The distortion of the default mode network in
mesiotemporal lobe epilepsy interlocks with spiking.

Clinical evidence on the harm of interictal
spikes

Children: The prevalence of epilepsy is 30% in children with
learning difficulties, and epileptic children without any IQ
deficit may perform more poorly than controls in distinct
learning domains, which justifies screening for such
weaknesses in epileptic children [83,84]. The mood disorders
seen in 34% of epileptic children can simulate cognitive deficits
[85].

Sleep-related spikes and spike-wave pattern found in non-
epileptic children is associated with cognitive deficits and
behavioural changes, and the decrease of spike numbers
resulted in behavioural improvement [86,87].

In mixed-type childhood epilepsies, attention- and short-
term memory deficits were seen [88]. The information
processing and visuo-motor integration was poorer in those
with interictal epileptic activity covering at least 10% of the
daytime EEG [89].

In age-related childhood epilepsies, behavioural anomalies
and cognitive loss [90,91], language and short-term memory
deficits were detected [92-94], e.g. in benign centro-temporal
epilepsy, proportionally with spiking the recognition of scary
faces was deficient [95]. In another group of idiopathic focal
epilepsy children, the memory consolidation related to nREM
sleep correlated negatively with spiking [96-98].

The most severe forms of epilepsy-related cognitive loss are
seen in the epileptic encephalopathies [82,99-101] with
abundant epileptic activity during sleep. Electrical status
epilepticus in nREM sleep presenting with global or patchy
cognitive deterioration and its focal variant Landau-Kleffner
syndrome with acquired aphasia are specific sleep-dependent
forms [102-107]. No seizures or just sparse ones may occur
with them; proving the independent harm of sleep related
interictal activity [104]. Without the orienting lead of clinical
seizures, these conditions cannot be diagnosed except with
sleep EEGs [105-107].

Thirty percent of children with epilepsies suffer with
attention-deficit hyperactivity syndrome. Both attention-
deficit hyperactivity syndrome and autism spectrum disorder
link with epilepsy, as shown by the presence of interictal
discharges carried by the affected non-epileptic children;
epilepsy is an “autism sibling comorbidity disorder” [108-110].

Adults: The prevalence of dementia in epilepsy varies in a
wide range: 8-17% [84]. Mesiotemporal lobe epilepsy may
importantly compromise memory, negatively correlating with
hippocampal volume and interictal activity [111-117]. The
most affected field is executive functioning including verbal
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fluency and IQ [22]. “Everyday” memory - phone-numbers and
dates - is impaired [114].

The role of interictal epileptic activity in the pathogenesis of
dementia in adult neurodegenerative conditions, e.g.
Alzheimer’s disease, has been raised [116,117].

Clinical consequences
The severe cognitive complications of interictal epileptic

activity during nREM sleep [97,118-120] call attention to the
lack of and need for a “spike-killing” treatment. Sleep EEG is
indispensable in epileptology practice in general, and
especially in searching for the cause of mental deterioration of
childhood with no clinical seizures [76,80].

Ad 4. Aberrant sensoro-limbic connections in
the mechanism of psychiatry comorbidities

Background
Brain functioning is related to the co-activation of

interconnected nodes, outlining brain networks. The whole of
functional and structural brain networks is called ‘connectome’
[analogue wording ‘genome’]; it is modelled by sophisticated
mathematical methods [121-123].  The functional networks
flexibly change their patterns depending on the context e.g.
state, age, mood, pains etc., mutually influencing each other
[123,124]. Somatic diseases also transform them; and their
conversions are causes and markers of mental conditions
[125-130]. The recognition of brain networks accompanies the
development of the network-concept of epilepsies and mental
conditions [131-133]; e.g. taking into account the long reach of
mesiotemporal lobe epilepsy involving wide spread bilateral
regions; not just one mesio-temporal focus [105,134].

Methodology
Functional MRI, diffusion tensor imaging, tractography:

Functional connectivity is the term describing the connected
[in time and frequency] activation of brain nodes in a network.
EEG-based sophisticated calculations and functional MRI allow
the modelling and imaging of brain networks [135]. Functional
MRI traces out the regional oxygen consumption [BOLD signal-
blood-oxygen-level dependent contrast imaging], which is
proportional with the metabolism of a region scrutinized
[136]. Thus, functional MRI can localise those regions co-
activated by a task, allowing the mapping of the connected
regions, constituting a functional network [137-139].

MRI tractography, based on diffusion tensor
imaging [DTI] is the tool of mapping structural
connectivity

MRI tractography images the neural pathways and tracts in
the white matter, anatomically interconnecting the nodes
[140]. DTI measures the diffusion of water molecules through
white-matter bundles; which is necessarily slower across high-

density structures. Its measure is anisotropic diffusion,
depending on the thickness and wholeness of myelin [141].

The default mode network (DMN)
We have learned the networks of elementary

somatosensory functions [142], and those of sophisticated
mental activities [143]. The latter are strongly related to the
task-negative networks activating during resting states and
inhibited by tasks; which had seemed artefacts -noises- initially
[144-147]. The pattern of those networks related to attention
[146], reward [147], mathematics [148] etc. determine our
moods, level of anxiety, thinking and pathologic mental brain
conditions.

The default mode network is one of the resting state
networks, involved in the brain's floating, non-specific -default-
activity [145,149]. Out of all other networks, the concordance
of functional and structural connectivity is the strongest in this
one [150], the “neurology base of self" [151]; related to a wide
range of cognitive, mood-related and emotional functions.

Its main nodes are the posterior cingulate cortex and
precuneus, the medial prefrontal cortex, the angular gyrus, the
temporo-parietal junction, the temporal pole and
hippocampus, the retrosplenial cortex and the posterior
inferior pariet "https://en.wikipedia.org/wiki/Parietal_lobe"al
lobe [149,152-155].

Epileptic networks
Epilepsy spreads across self-generating tracks - epileptic

networks- in the brain producing new spikes, seizures and
additional epileptic regions (foci) on its way [156-158]. In this
sense, epilepsies are progressive conditions. Typically,
mesiotemporal epilepsy spreads to the contralateral
hippocampus, the homo-lateral temporal neocortex and the
ipsilateral frontal lobe [104,159].

Interaction between interictal epileptic activity
and the default mode network

Immediately before spikes occur, there is an increase of
default mode network-activity, while spikes associate with a
decrease of the activity of several default mode network
nodes [138], suggesting an interaction [137,160]. This mutual
effect might explain why in encephalopathy with electrical
status epilepticus in sleep the spiking regions show an
increased default mode network activity, while outside the
epileptogenic area, it deactivates pathologically [82].

Abnormal functional connectivity in
mesiotemporal lobe epilepsy

There are several epilepsy-specific functional connectivity
changes [161]. The network changes persist after seizure
freedom is reached, i.e. chronic epilepsy leads to a permanent
network distortion (and likely related mental symptoms);
making early treatment vital [162]. The pattern of functional
connectivity changes helps to discriminate mesiotemporal
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epilepsy cases with or without hippocampal sclerosis, right and
left, poor and good prognosis, easy- and difficult-to-treat ones
[163-170] and those ones developing after-, versus those
without a febrile convulsion (Table 1). 

The default mode network undergoes a transformation in
mesiotemporal epilepsy. There is an intra-hippocampal

increase of connectivity and a decrease of connectivity
between the hippocampus and the default mode network
[171-180]. The limbic-neocortical connectivity is low as well
(Table 1).

Table 1 Network changes shared by mesiotemporal epilepsy and non-epileptic psychoses (schizophrenia and schizophrenia
spectrum disorders -ICD10-5 F20-29; DSM5-2; depressions and bipolar disorders -ICD10-5 F30-39; DSM5-3,4) (C= connectivity,
H= hippocampus, hippocampal, DMN: default mode network, SMA: Supplementary sensory-motor area).

Mesiotemporal epilepsy Schizophreniform psychosis Depression/bipolar disorder

Decreased C between H and DMN [163-165] Decreased C between H and DMN
[187]

Decreased medial prefrontal cortex C [186]

Hyperconnetivity between H and DMN [166]

 

Increased C between the occipital and cingulate cortex
[134,171]

DMN hyper-, [132,187] or hypo-
connectivity [155,180,188].

Decreased DMN C in the left caudate nucleus, right
anterior cingulate cortex, right angular gyrus, bilateral
medial prefrontal cortex and right praecuneus [190].

C changes between H-DMN and H-
SMA correlating [180,188] with
positive symptoms.

Increased C between the DMN and the subgenual region
[192, 193]

C changes in the bilateral
praecuneus and right inferior parietal
lobulus [180].

 

Increased neocortico-limbic C [193] Distorted cortico-subcortical
networks: thalamocortical,
frontolimbic and cortico-cerebellar
[194-197].

Inter-hemispheric and limbic C changes; increased
amygdala-medial praefrontal C [186]

Hippocampo-limbic C changes correlating with the
depressive symptoms positively in left mesiotemporal
epilepsy, negatively in right mesiotemporal epilepsy [198].

C changes in hearing and language
networks, in the frontopolar network,
in basal ganglia [199].

 

Changes of C in amygdalar emotional face recognition
networks, mainly in right temporal epilepsy [167,168]

changes of C between nucleus
accumbens-DMN, and cingulo-
opercular network [201]

 

Increased intra-H C [134, 171] Abnormal intra-H C [189]  

The functional connectivity changes found in
non-epileptic psychoses and affective
conditions are similar to those in epilepsy

There are default mode network excitation/inhibition
changes and imbalance in psychotic and affective disorders,
affecting mentally intact relatives as well [180-185]. Although
due to methodology issues, the data on network changes are
hard to summarize there is growing evidence on the change of
the default mode network or some of its nodes in non-
epileptic mental conditions.

In Table 1 and Figure 2, we present those connectivity
changes strikingly shared by non-epileptic psychoses and
epilepsies, to highlight the similarities, which are in line with
structural changes and might contribute to the development
of psychoses in epilepsy.

Epilepsy causes structural connectivity changes
There are unexpected structural changes in non-lesional

epilepsies [164-172]. The volume of white matter decreases in
childhood epilepsies. In surgical tissue samples of
mesiotemporal epilepsy patients, there were significantly

more excitatory and inhibitory neurones both in the white and
grey matter, than in non-epileptic controls [173].

Figure 2 The nodes of default mode network distortions in
epilepsy, non-epileptic mood disorders and schizophrenia.
The nodes shared by the three types of conditions are
marked in red.

There were white matter abnormalities in the fornix, the
cingulate gyrus, the corpus callosum and the left superior
frontal gyrus with widespread extra-temporal grey matter
atrophy despite excess aberrant neurogenesis [174-177]. In
the default mode network pathways of animas modelling
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mesiotemporal epilepsy, the axonal calibres were decreased
and the myelin-sheets abnormal [151] and in humans, the
degree of the anterior temporal, uncinate and lower
longitudinal fasciculus abnormalities correlated with the
severity of mesiotemporal epilepsy [173].

In summary, because the degree of white matter
impairment correlates with the frequency of partial seizures
and the duration of mesiotemporal epilepsy, the causative role
of epilepsy seems likely [186-200].

How does epilepsy cause white matter
damage?

The over-use of epileptic networks by spiking and seizures
may not be responsible in itself, because generally, the excess
use of brain systems - practice - improves functioning: e.g.,
vision, movements, thinking etc. do not cause harm; rather,
they improve performance and lead to the anatomic
enlargement of the involved system, contrasting epilepsy.

Structural connectivity-changes in non-
epileptic psychoses and mood disorders
(ICD10-5 F20-29; DSM5-2; ICD10-5-F30-39;
DSM5-3,4)

Schizophrenias develop white matter disorganisation.
Schizophrenia and bipolar disorders share frontal white matter
anomalies, more marked in the former [186]. The fronto-
temporal pathways are abnormal early, even in the prodromal
phase and in adolescents. The decrease of white matter
volume correlates with the duration of the disease [140].

There are grey matter volume changes as well, affecting the
frontal, temporal and anterior cingulate cortices [200,201].
The volume-increase of the thalamus, and the decrease of the
left middle and superior frontal gyrus, significantly link with
cognitive deficits [194,195].

In summary, it is possible that epileptic psychoses and mood
disorders are related to the structural changes caused by
epilepsy, partially resembling those seen in genuine mental
conditions.

Summary of the chapter ‘Aberrant sensoro-
limbic connections in the mechanism of
psychiatry comorbidities’

Epilepsy, especially mesiotemporal epilepsy

• Changes the default mode network.
• It causes structural damage affecting both grey and white

matter especially the tracts and nodes of the default mode
network.

These network changes and structural alterations resemble
those seen in genuine, major psychiatry conditions probably
contributing to the appearance of their atypical forms in
epilepsies.

Summary Considerations

Mechanism of psychopathology in epilepsy
Depressions and epilepsy: Psychosocial factors do certainly

affect patients’ mood and some of the antiepileptic
medications may contribute as well, but the remarkably
frequent depressive co-morbidity compared to the rest of
chronic conditions suggests an additional biological
background of depression in epilepsy [202-206]. There are
pathogenic factors shared by depressions and epilepsies e.g.
the overlapping functional and structural connectivity changes
[207-212]. The harm of temporal lobe epileptic activity exerts
on plastic functions is another major contributing factor
[35-37,212,213] while conversely, depression impairs memory
[214].

In epileptic animal models, low levels of serotonin,
noradrenaline, dopamine and GABA promote the production
of new epileptic areas - epileptic kindling- increasing seizure
frequency and disease severity. Some antidepressants may
inhibit or reverse this [209,215,216].

Higher serotonin levels allow long lasting long-term
potentiation in response to external stimuli, while lower ones
support the replay of engram [54]: the serotonergic
disturbances related to depression have multi-lateral impacts
on memory consolidation. The triangle of epilepsy, depression
and cognitive loss interact, mutually augmenting each other
[9,215,217].

Epilepsy and psychoses: Based on the frequently seen
interictal psychoses in patients with complex partial seizures,
Gibbs and Gibbs [218] presumed the existence of common
mesio-temporal mechanisms. Several data support this
suspicion.

• Connectivity studies [134,219]: epilepsies lead to atypical
psychotic disorders, though distorting the default mode
network.

• There are shared genetic factors of temporal lobe epilepsy
and schizophrenia [220].

• In surgical samples of TLE patients suffering also in
psychoses or major depression, the accumulation of neuro-
inflammatory molecules resembled those in non-epileptic
psychiatry conditions discriminating temporal lobe epilepsy
with or without a psychosis [216].

• We have known since Kraepelin and Bleuler that
schizophrenia associate with cognitive harm, even before
the actual onset of psychosis. The cognitive loss is not a
complication of psychosocial factors and occurs in the
normal relatives as well; it might be a risk factor and
harbinger of poor prognosis in schizophrenias [221].
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